High Vulnerabilities

Primary
Vendor — Product
Description Published CVSS Score Source & Patch Info
ASUS–ExpertWiFi
 
ASUS routers supporting custom OpenVPN profiles are vulnerable to a code execution vulnerability. An authenticated and remote attacker can execute arbitrary operating system commands by uploading a crafted OVPN profile. Known affected routers include ASUS ExpertWiFi, ASUS RT-AX55, ASUS RT-AX58U, ASUS RT-AC67U, ASUS RT-AC68R, ASUS RT-AC68U, ASUS RT-AX86, ASUS RT-AC86U, ASUS RT-AX88U, and ASUS RT-AX3000. 2024-05-20 7.2 CVE-2024-0401
[email protected]
Adobe–Acrobat Reader
 
Acrobat Reader versions 20.005.30574, 24.002.20736 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. 2024-05-23 7.8 CVE-2024-30279
[email protected]
Adobe–Acrobat Reader
 
Acrobat Reader versions 20.005.30574, 24.002.20736 and earlier are affected by an out-of-bounds read vulnerability when parsing a crafted file, which could result in a read past the end of an allocated memory structure. An attacker could leverage this vulnerability to execute code in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. 2024-05-23 7.8 CVE-2024-30280
[email protected]
Byron–gitoxide
 
gitoxide is a pure Rust implementation of Git. During checkout, `gix-worktree-state` does not verify that paths point to locations in the working tree. A specially crafted repository can, when cloned, place new files anywhere writable by the application. This vulnerability leads to a major loss of confidentiality, integrity, and availability, but creating files outside a working tree without attempting to execute code can directly impact integrity as well. This vulnerability has been patched in version(s) 0.36.0. 2024-05-23 8.8 CVE-2024-35186
[email protected]
Cisco–Cisco Firepower Management Center
 
A vulnerability in the web-based management interface of Cisco Firepower Management Center (FMC) Software could allow an authenticated, remote attacker to conduct SQL injection attacks on an affected system. This vulnerability exists because the web-based management interface does not adequately validate user input. An attacker could exploit this vulnerability by authenticating to the application and sending crafted SQL queries to an affected system. A successful exploit could allow the attacker to obtain any data from the database, execute arbitrary commands on the underlying operating system, and elevate privileges to root. To exploit this vulnerability, an attacker would need at least Read Only user credentials. 2024-05-22 8.8 CVE-2024-20360
[email protected]
Dolibarr–ERP CMS
 
Vulnerabilities in Dolibarr ERP – CRM that affect version 9.0.1 and allow SQL injection. These vulnerabilities could allow a remote attacker to send a specially crafted SQL query to the system and retrieve all the information stored in the database through the parameters sortorder y sortfield in /dolibarr/admin/dict.php. 2024-05-24 9.1 CVE-2024-5314
[email protected]
Dolibarr–ERP CMS
 
Vulnerabilities in Dolibarr ERP – CRM that affect version 9.0.1 and allow SQL injection. These vulnerabilities could allow a remote attacker to send a specially crafted SQL query to the system and retrieve all the information stored in the database through the parameters viewstatut in /dolibarr/commande/list.php. 2024-05-24 9.1 CVE-2024-5315
[email protected]
Flexense–VX Search Enterprise
 
A vulnerability has been discovered in VX Search Enterprise affecting version 10.2.14 that could allow an attacker to execute persistent XSS through /setup_odbc in odbc_data_source, odbc_user and odbc_password parameters. This vulnerability could allow an attacker to store malicious JavaScript payloads on the system to be triggered when the page loads. 2024-05-24 7.1 CVE-2023-49572
[email protected]
Flexense–VX Search Enterprise
 
A vulnerability has been discovered in VX Search Enterprise affecting version 10.2.14 that could allow an attacker to execute persistent XSS through /add_command_action in action_value. This vulnerability could allow an attacker to store malicious JavaScript payloads on the system to be triggered when the page loads. 2024-05-24 7.1 CVE-2023-49573
[email protected]
Flexense–VX Search Enterprise
 
A vulnerability has been discovered in VX Search Enterprise affecting version 10.2.14 that could allow an attacker to execute persistent XSS through /add_job in job_name. This vulnerability could allow an attacker to store malicious JavaScript payloads on the system to be triggered when the page loads. 2024-05-24 7.1 CVE-2023-49574
[email protected]
Flexense–VX Search Enterprise
 
A vulnerability has been discovered in VX Search Enterprise affecting version 10.2.14 that could allow an attacker to execute persistent XSS through /setup_smtp in smtp_server, smtp_user, smtp_password and smtp_email_address parameters. This vulnerability could allow an attacker to store malicious JavaScript payloads on the system to be triggered when the page loads. 2024-05-24 7.1 CVE-2023-49575
[email protected]
Fluent Bit–Fluent Bit
 
A memory corruption vulnerability in Fluent Bit versions 2.0.7 thru 3.0.3. This issue lies in the embedded http server’s parsing of trace requests and may result in denial of service conditions, information disclosure, or remote code execution. 2024-05-20 9.8 CVE-2024-4323
[email protected]
[email protected]
Genetech Solutions–Pie Register – Social Sites Login (Add on)
 
The Pie Register – Social Sites Login (Add on) plugin for WordPress is vulnerable to authentication bypass in versions up to, and including, 1.7.7. This is due to insufficient verification on the user being supplied during a social login through the plugin. This makes it possible for unauthenticated attackers to log in as any existing user on the site, such as an administrator, if they have access to the email. 2024-05-24 9.8 CVE-2024-4544
[email protected]
[email protected]
GitLab–GitLab
 
A XSS condition exists within GitLab in versions 15.11 before 16.10.6, 16.11 before 16.11.3, and 17.0 before 17.0.1. By leveraging this condition, an attacker can craft a malicious page to exfiltrate sensitive user information. 2024-05-23 8 CVE-2024-4835
[email protected]
[email protected]
IBM–i
 
IBM Performance Tools for i 7.2, 7.3, 7.4, and 7.5 could allow a local user to gain elevated privileges due to an unqualified library call. A malicious actor could cause user-controlled code to run with administrator privilege. IBM X-Force ID: 284563. 2024-05-22 7.4 CVE-2024-27264
[email protected]
[email protected]
Justice AV Solutions–Viewer
 
Justice AV Solutions Viewer Setup 8.3.7.250-1 contains a malicious binary when executed and is signed with an unexpected authenticode signature. A remote, privileged threat actor may exploit this vulnerability to execute of unauthorized PowerShell commands. 2024-05-23 8.4 CVE-2024-4978
9119a7d8-5eab-497f-8521-727c672e3725
LCDS–LAquis SCADA
 
There are multiple ways in LCDS LAquis SCADA for an attacker to access locations outside of their own directory. 2024-05-21 7.8 CVE-2024-5040
[email protected]
ManageEngine–ADAudit Plus
 
Zoho ManageEngine ADAudit Plus versions below 7271 allows SQL Injection while getting aggregate report data. 2024-05-20 8.3 CVE-2023-49330
0fc0942c-577d-436f-ae8e-945763c79b02
ManageEngine–ADAudit Plus
 
Zoho ManageEngine ADAudit Plus versions below 7271 allows SQL injection in the aggregate reports search option. 2024-05-20 8.3 CVE-2023-49331
0fc0942c-577d-436f-ae8e-945763c79b02
ManageEngine–ADAudit Plus
 
Zoho ManageEngine ADAudit Plus versions below 7271 allows SQL injection while adding file shares. 2024-05-20 8.3 CVE-2023-49332
0fc0942c-577d-436f-ae8e-945763c79b02
ManageEngine–ADAudit Plus
 
Zoho ManageEngine ADAudit Plus versions below 7271 allows SQL injection in the dashboard graph feature. 2024-05-20 8.3 CVE-2023-49333
0fc0942c-577d-436f-ae8e-945763c79b02
ManageEngine–ADAudit Plus
 
Zoho ManageEngine ADAudit Plus versions below 7271 allows SQL Injection while exporting a full summary report. 2024-05-20 8.3 CVE-2023-49334
0fc0942c-577d-436f-ae8e-945763c79b02
ManageEngine–ADAudit Plus
 
Zoho ManageEngine ADAudit Plus versions below 7271 allows SQL injection while getting file server details. 2024-05-20 8.3 CVE-2023-49335
0fc0942c-577d-436f-ae8e-945763c79b02
ManageEngine–PAM360
 
Zoho ManageEngine PAM360 version 6601 is vulnerable to authorization vulnerability which allows a low-privileged user to perform admin actions. Note: This vulnerability affects only the PAM360 6600 version. No other versions are applicable to this vulnerability. 2024-05-20 8.1 CVE-2024-27312
0fc0942c-577d-436f-ae8e-945763c79b02
MemberPress–Memberpress
 
The Memberpress plugin for WordPress is vulnerable to Blind Server-Side Request Forgery in all versions up to, and including, 1.11.29 via the ‘mepr-user-file’ shortcode. This makes it possible for authenticated attackers, with Contributor-level access and above, to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services. 2024-05-22 8.5 CVE-2024-5031
[email protected]
[email protected]
Microsoft–Microsoft Edge (Chromium-based)
 
Microsoft Edge (Chromium-based) Information Disclosure Vulnerability 2024-05-25 7.1 CVE-2024-30056
[email protected]
OpenCTI-Platform–opencti
 
OpenCTI is an open source platform allowing organizations to manage their cyber threat intelligence knowledge and observables. Due to lack of certain security controls on the profile edit functionality, an authenticated attacker with low privileges can gain administrative privileges on the web application. 2024-05-23 8.3 CVE-2024-26139
[email protected]
OpenText–ArcSight Enterprise Security Manager
 
A Stored Cross-Site Scripting (XSS) vulnerability has been identified in OpenText ArcSight Enterprise Security Manager and ArcSight Platform. The vulnerability could be remotely exploited. 2024-05-20 8.7 CVE-2024-2835
[email protected]
OpenText–ArcSight Enterprise Security Manager
 
A Stored Cross-Site Scripting (XSS) vulnerability has been identified in OpenText ArcSight Enterprise Security Manager and ArcSight Platform. The vulnerability could be remotely exploited. 2024-05-20 8.7 CVE-2024-3482
[email protected]
OpenText–Dimensions RM
 
Privilege Escalation in OpenText Dimensions RM allows an authenticated user to escalate there privilege to the privilege of another user via HTTP Request 2024-05-23 8.8 CVE-2024-5201
[email protected]
OpenText–Dimensions RM
 
Arbitrary File Read in OpenText Dimensions RM allows authenticated users to read files stored on the server via webservices 2024-05-23 7.7 CVE-2024-5202
[email protected]
Oxygen Builder–Oxygen Builder
 
The Oxygen Builder plugin for WordPress is vulnerable to Remote Code Execution in all versions up to, and including, 4.8.2 via post metadata. This is due to the plugin storing custom data in post metadata without an underscore prefix. This makes it possible for lower privileged users, such as contributors, to inject arbitrary PHP code via the WordPress user interface and gain elevated privileges. 2024-05-23 8.8 CVE-2024-4662
[email protected]
[email protected]
PHPGurukul–Directory Management System
 
A vulnerability was found in PHPGurukul Directory Management System 1.0. It has been rated as critical. This issue affects some unknown processing of the file /admin/index.php. The manipulation of the argument username leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265211. 2024-05-20 7.3 CVE-2024-5135
[email protected]
[email protected]
[email protected]
[email protected]
Prodys–Quantum Audio codec
 
Improper access control vulnerability in Prodys’ Quantum Audio codec affecting versions 2.3.4t and below. This vulnerability could allow an unauthenticated user to bypass authentication entirely and execute arbitrary API requests against the web application. 2024-05-23 9.8 CVE-2024-5168
[email protected]
QNAP Systems Inc.–QTS
 
A double free vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated users to execute arbitrary code via a network. We have already fixed the vulnerability in the following version: QTS 5.1.7.2770 build 20240520 and later QuTS hero h5.1.7.2770 build 20240520 and later 2024-05-21 7.2 CVE-2024-27127
[email protected]
QNAP Systems Inc.–QTS
 
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow users to execute code via a network. We have already fixed the vulnerability in the following version: QTS 5.1.7.2770 build 20240520 and later QuTS hero h5.1.7.2770 build 20240520 and later 2024-05-21 7.2 CVE-2024-27130
[email protected]
SolarWinds–SolarWinds Platform 
 
The SolarWinds Platform was determined to be affected by a reflected cross-site scripting vulnerability affecting the web console. A high-privileged user and user interaction is required to exploit this vulnerability. 2024-05-20 7.9 CVE-2024-29000
[email protected]
[email protected]
SourceCodester–Event Registration System
 
A vulnerability, which was classified as critical, was found in SourceCodester Event Registration System 1.0. This affects an unknown part of the file portal.php. The manipulation of the argument username/password leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-265197 was assigned to this vulnerability. 2024-05-20 7.3 CVE-2024-5117
[email protected]
[email protected]
[email protected]
SourceCodester–Event Registration System
 
A vulnerability has been found in SourceCodester Event Registration System 1.0 and classified as critical. This vulnerability affects unknown code of the file /admin/login.php. The manipulation of the argument username/password leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. VDB-265198 is the identifier assigned to this vulnerability. 2024-05-20 7.3 CVE-2024-5118
[email protected]
[email protected]
[email protected]
[email protected]
SourceCodester–Event Registration System
 
A vulnerability was found in SourceCodester Event Registration System 1.0. It has been rated as critical. Affected by this issue is some unknown functionality of the file /registrar/. The manipulation of the argument search leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. VDB-265202 is the identifier assigned to this vulnerability. 2024-05-20 7.3 CVE-2024-5122
[email protected]
[email protected]
[email protected]
[email protected]
SourceCodester–Online Examination System
 
A vulnerability, which was classified as critical, has been found in SourceCodester Online Examination System 1.0. Affected by this issue is some unknown functionality of the file save.php. The manipulation of the argument vote leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-265196. 2024-05-20 7.3 CVE-2024-5116
[email protected]
[email protected]
[email protected]
[email protected]
ZkTeco–ZkTeco-based OEM devices with firmware ZAM170-NF-1.8.25-7354-Ver1.0.0, Standalone service v. 2.1.6-20200907
 
An ‘SQL Injection’ vulnerability, due to improper neutralization of special elements used in SQL commands, exists in ZKTeco-based OEM devices. This vulnerability allows an attacker to, in some cases, impersonate another user or perform unauthorized actions. In other instances, it enables the attacker to access user data and system parameters from the database. This issue affects ZkTeco-based OEM devices (ZkTeco ProFace X, Smartec ST-FR043, Smartec ST-FR041ME and possibly others) with firmware ZAM170-NF-1.8.25-7354-Ver1.0.0 and possibly other, Standalone service v. 2.1.6-20200907 and possibly others. 2024-05-21 7.5 CVE-2023-3942
[email protected]
ZkTeco–ZkTeco-based OEM devices with firmware ZAM170-NF-1.8.25-7354-Ver1.0.0
 
Improper Neutralization of Special Elements used in an OS Command (‘OS Command Injection’) vulnerability in ZkTeco-based OEM devices allows OS Command Injection. Since all the found command implementations are executed from the superuser, their impact is the maximum possible. This issue affects ZkTeco-based OEM devices (ZkTeco ProFace X, Smartec ST-FR043, Smartec ST-FR041ME and possibly others) with the ZAM170-NF-1.8.25-7354-Ver1.0.0 and possibly other. 2024-05-21 10 CVE-2023-3939
[email protected]
ZkTeco–ZkTeco-based OEM devices with firmware ZAM170-NF-1.8.25-7354-Ver1.0.0
 
Relative Path Traversal vulnerability in ZkTeco-based OEM devices allows an attacker to write any file on the system with root privileges. This issue affects ZkTeco-based OEM devices (ZkTeco ProFace X, Smartec ST-FR043, Smartec ST-FR041ME and possibly others) with the ZAM170-NF-1.8.25-7354-Ver1.0.0 and possibly others. 2024-05-21 10 CVE-2023-3941
[email protected]
ZkTeco–ZkTeco-based OEM devices with firmware ZAM170-NF-1.8.25-7354-Ver1.0.0
 
Stack-based Buffer Overflow vulnerability in ZkTeco-based OEM devices allows, in some cases, the execution of arbitrary code. Due to the lack of protection mechanisms such as stack canaries and PIE, it is possible to successfully execute code even under restrictive conditions. This issue affects ZkTeco-based OEM devices (ZkTeco ProFace X, Smartec ST-FR043, Smartec ST-FR041ME and possibly others) with firmware ZAM170-NF-1.8.25-7354-Ver1.0.0 and possibly others. 2024-05-21 10 CVE-2023-3943
[email protected]
ZkTeco–ZkTeco-based OEM devices with firmware ZAM170-NF-1.8.25-7354-Ver1.0.0
 
Relative Path Traversal vulnerability in ZkTeco-based OEM devices allows an attacker to access any file on the system. This issue affects ZkTeco-based OEM devices (ZkTeco ProFace X, Smartec ST-FR043, Smartec ST-FR041ME and possibly others) with the ZAM170-NF-1.8.25-7354-Ver1.0.0 and possibly others. 2024-05-21 7.5 CVE-2023-3940
[email protected]
argoproj–argo-cd
 
Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. It has been discovered that an unprivileged pod in a different namespace on the same cluster could connect to the Redis server on port 6379. Despite having installed the latest version of the VPC CNI plugin on the EKS cluster, it requires manual enablement through configuration to enforce network policies. This raises concerns that many clients might unknowingly have open access to their Redis servers. This vulnerability could lead to Privilege Escalation to the level of cluster controller, or to information leakage, affecting anyone who does not have strict access controls on their Redis instance. This issue has been patched in version(s) 2.8.19, 2.9.15 and 2.10.10. 2024-05-21 9 CVE-2024-31989
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
devitemsllc–ShopLentor WooCommerce Builder for Elementor & Gutenberg +12 Modules All in One Solution (formerly WooLentor)
 
The ShopLentor plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the ajax_dismiss function in all versions up to, and including, 2.8.8. This makes it possible for authenticated attackers, with contributor-level access and above, to set arbitrary WordPress options to “true”. NOTE: This vulnerability can be exploited by attackers with subscriber- or customer-level access and above if (1) the WooCommerce plugin is deactivated or (2) access to the default WordPress admin dashboard is explicitly enabled for authenticated users. 2024-05-21 7.1 CVE-2024-4566
[email protected]
[email protected]
[email protected]
dfir-iris–iris-evtx-module
 
IrisEVTXModule is an interface module for Evtx2Splunk and Iris in order to ingest Microsoft EVTX log files. The `iris-evtx-module` is a pipeline plugin of `iris-web` that processes EVTX files through IRIS web application. During the upload of an EVTX through this pipeline, the filename is not safely handled and may cause an Arbitrary File Write. This can lead to a remote code execution (RCE) when combined with a Server Side Template Injection (SSTI). This vulnerability has been patched in version 1.0.0. 2024-05-23 8.8 CVE-2024-34060
[email protected]
[email protected]
dglingren–Media Library Assistant
 
The Media Library Assistant plugin for WordPress is vulnerable to SQL Injection via the plugin’s shortcode(s) in all versions up to, and including, 3.15 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with contributor access or higher, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. 2024-05-22 8.8 CVE-2024-3518
[email protected]
[email protected]
[email protected]
emrevona–WP Fastest Cache
 
The WP Fastest Cache plugin for WordPress is vulnerable to Directory Traversal in all versions up to, and including, 1.2.6 via the specificDeleteCache function. This makes it possible for authenticated attackers to delete arbitrary files on the server, which can include wp-config.php files of the affected site or other sites in a shared hosting environment. 2024-05-23 7.2 CVE-2024-4347
[email protected]
[email protected]
[email protected]
fastify–session
 
@fastify/session is a session plugin for fastify. Requires the @fastify/cookie plugin. When restoring the cookie from the session store, the `expires` field is overriden if the `maxAge` field was set. This means a cookie is never correctly detected as expired and thus expired sessions are not destroyed. This vulnerability has been patched 10.8.0. 2024-05-21 7.4 CVE-2024-35220
[email protected]
[email protected]
[email protected]
hashthemes–Hash Form Drag & Drop Form Builder
 
The Hash Form – Drag & Drop Form Builder plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in the ‘file_upload_action’ function in all versions up to, and including, 1.1.0. This makes it possible for unauthenticated attackers to upload arbitrary files on the affected site’s server which may make remote code execution possible. 2024-05-23 9.8 CVE-2024-5084
[email protected]
[email protected]
[email protected]
hashthemes–Hash Form Drag & Drop Form Builder
 
The Hash Form – Drag & Drop Form Builder plugin for WordPress is vulnerable to PHP Object Injection in all versions up to, and including, 1.1.0 via deserialization of untrusted input in the ‘process_entry’ function. This makes it possible for unauthenticated attackers to inject a PHP Object. No known POP chain is present in the vulnerable software. If a POP chain is present via an additional plugin or theme installed on the target system, it could allow the attacker to delete arbitrary files, retrieve sensitive data, or execute code. 2024-05-23 8.1 CVE-2024-5085
[email protected]
[email protected]
[email protected]
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free bug in cifs_debug_data_proc_show() Skip SMB sessions that are being teared down (e.g. @ses->ses_status == SES_EXITING) in cifs_debug_data_proc_show() to avoid use-after-free in @ses. This fixes the following GPF when reading from /proc/fs/cifs/DebugData while mounting and umounting [ 816.251274] general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6d81: 0000 [#1] PREEMPT SMP NOPTI … [ 816.260138] Call Trace: [ 816.260329] <TASK> [ 816.260499] ? die_addr+0x36/0x90 [ 816.260762] ? exc_general_protection+0x1b3/0x410 [ 816.261126] ? asm_exc_general_protection+0x26/0x30 [ 816.261502] ? cifs_debug_tcon+0xbd/0x240 [cifs] [ 816.261878] ? cifs_debug_tcon+0xab/0x240 [cifs] [ 816.262249] cifs_debug_data_proc_show+0x516/0xdb0 [cifs] [ 816.262689] ? seq_read_iter+0x379/0x470 [ 816.262995] seq_read_iter+0x118/0x470 [ 816.263291] proc_reg_read_iter+0x53/0x90 [ 816.263596] ? srso_alias_return_thunk+0x5/0x7f [ 816.263945] vfs_read+0x201/0x350 [ 816.264211] ksys_read+0x75/0x100 [ 816.264472] do_syscall_64+0x3f/0x90 [ 816.264750] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 816.265135] RIP: 0033:0x7fd5e669d381 2024-05-21 7.8 CVE-2023-52752
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix slab-use-after-free in gfs2_qd_dealloc In gfs2_put_super(), whether withdrawn or not, the quota should be cleaned up by gfs2_quota_cleanup(). Otherwise, struct gfs2_sbd will be freed before gfs2_qd_dealloc (rcu callback) has run for all gfs2_quota_data objects, resulting in use-after-free. Also, gfs2_destroy_threads() and gfs2_quota_cleanup() is already called by gfs2_make_fs_ro(), so in gfs2_put_super(), after calling gfs2_make_fs_ro(), there is no need to call them again. 2024-05-21 7.8 CVE-2023-52760
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix htt mlo-offset event locking The ath12k active pdevs are protected by RCU but the htt mlo-offset event handling code calling ath12k_mac_get_ar_by_pdev_id() was not marked as a read-side critical section. Mark the code in question as an RCU read-side critical section to avoid any potential use-after-free issues. Compile tested only. 2024-05-21 7.8 CVE-2023-52769
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: af_unix: fix use-after-free in unix_stream_read_actor() syzbot reported the following crash [1] After releasing unix socket lock, u->oob_skb can be changed by another thread. We must temporarily increase skb refcount to make sure this other thread will not free the skb under us. [1] BUG: KASAN: slab-use-after-free in unix_stream_read_actor+0xa7/0xc0 net/unix/af_unix.c:2866 Read of size 4 at addr ffff88801f3b9cc4 by task syz-executor107/5297 CPU: 1 PID: 5297 Comm: syz-executor107 Not tainted 6.6.0-syzkaller-15910-gb8e3a87a627b #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xd9/0x1b0 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:364 [inline] print_report+0xc4/0x620 mm/kasan/report.c:475 kasan_report+0xda/0x110 mm/kasan/report.c:588 unix_stream_read_actor+0xa7/0xc0 net/unix/af_unix.c:2866 unix_stream_recv_urg net/unix/af_unix.c:2587 [inline] unix_stream_read_generic+0x19a5/0x2480 net/unix/af_unix.c:2666 unix_stream_recvmsg+0x189/0x1b0 net/unix/af_unix.c:2903 sock_recvmsg_nosec net/socket.c:1044 [inline] sock_recvmsg+0xe2/0x170 net/socket.c:1066 ____sys_recvmsg+0x21f/0x5c0 net/socket.c:2803 ___sys_recvmsg+0x115/0x1a0 net/socket.c:2845 __sys_recvmsg+0x114/0x1e0 net/socket.c:2875 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b RIP: 0033:0x7fc67492c559 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fc6748ab228 EFLAGS: 00000246 ORIG_RAX: 000000000000002f RAX: ffffffffffffffda RBX: 000000000000001c RCX: 00007fc67492c559 RDX: 0000000040010083 RSI: 0000000020000140 RDI: 0000000000000004 RBP: 00007fc6749b6348 R08: 00007fc6748ab6c0 R09: 00007fc6748ab6c0 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fc6749b6340 R13: 00007fc6749b634c R14: 00007ffe9fac52a0 R15: 00007ffe9fac5388 </TASK> Allocated by task 5295: kasan_save_stack+0x33/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 __kasan_slab_alloc+0x81/0x90 mm/kasan/common.c:328 kasan_slab_alloc include/linux/kasan.h:188 [inline] slab_post_alloc_hook mm/slab.h:763 [inline] slab_alloc_node mm/slub.c:3478 [inline] kmem_cache_alloc_node+0x180/0x3c0 mm/slub.c:3523 __alloc_skb+0x287/0x330 net/core/skbuff.c:641 alloc_skb include/linux/skbuff.h:1286 [inline] alloc_skb_with_frags+0xe4/0x710 net/core/skbuff.c:6331 sock_alloc_send_pskb+0x7e4/0x970 net/core/sock.c:2780 sock_alloc_send_skb include/net/sock.h:1884 [inline] queue_oob net/unix/af_unix.c:2147 [inline] unix_stream_sendmsg+0xb5f/0x10a0 net/unix/af_unix.c:2301 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0xd5/0x180 net/socket.c:745 ____sys_sendmsg+0x6ac/0x940 net/socket.c:2584 ___sys_sendmsg+0x135/0x1d0 net/socket.c:2638 __sys_sendmsg+0x117/0x1e0 net/socket.c:2667 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b Freed by task 5295: kasan_save_stack+0x33/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 kasan_save_free_info+0x2b/0x40 mm/kasan/generic.c:522 ____kasan_slab_free mm/kasan/common.c:236 [inline] ____kasan_slab_free+0x15b/0x1b0 mm/kasan/common.c:200 kasan_slab_free include/linux/kasan.h:164 [inline] slab_free_hook mm/slub.c:1800 [inline] slab_free_freelist_hook+0x114/0x1e0 mm/slub.c:1826 slab_free mm/slub.c:3809 [inline] kmem_cache_free+0xf8/0x340 mm/slub.c:3831 kfree_skbmem+0xef/0x1b0 net/core/skbuff.c:1015 __kfree_skb net/core/skbuff.c:1073 [inline] consume_skb net/core/skbuff.c:1288 [inline] consume_skb+0xdf/0x170 net/core/skbuff.c:1282 queue_oob net/unix/af_unix.c:2178 [inline] u —truncated— 2024-05-21 7.8 CVE-2023-52772
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix possible out-of-bound read in ath12k_htt_pull_ppdu_stats() len is extracted from HTT message and could be an unexpected value in case errors happen, so add validation before using to avoid possible out-of-bound read in the following message iteration and parsing. The same issue also applies to ppdu_info->ppdu_stats.common.num_users, so validate it before using too. These are found during code review. Compile test only. 2024-05-21 7.1 CVE-2023-52827
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
n/a–VMware ESXi
 
The storage controllers on VMware ESXi, Workstation, and Fusion have out-of-bounds read/write vulnerability. A malicious actor with access to a virtual machine with storage controllers enabled may exploit this issue to create a denial of service condition or execute code on the hypervisor from a virtual machine in conjunction with other issues. 2024-05-21 8.1 CVE-2024-22273
[email protected]
n/a–VMware vCenter Server
 
The vCenter Server contains an authenticated remote code execution vulnerability. A malicious actor with administrative privileges on the vCenter appliance shell may exploit this issue to run arbitrary commands on the underlying operating system. 2024-05-21 7.2 CVE-2024-22274
[email protected]
n/a–n/a
 
Qlik Sense Enterprise for Windows before 14.187.4 allows a remote attacker to elevate their privilege due to improper validation. The attacker can elevate their privilege to the internal system role, which allows them to execute commands on the server. This affects February 2024 Patch 3 (14.173.3 through 14.173.7), November 2023 Patch 8 (14.159.4 through 14.159.13), August 2023 Patch 13 (14.139.3 through 14.139.20), May 2023 Patch 15 (14.129.3 through 14.129.22), February 2023 Patch 13 (14.113.1 through 14.113.18), November 2022 Patch 13 (14.97.2 through 14.97.18), August 2022 Patch 16 (14.78.3 through 14.78.23), and May 2022 Patch 17 (14.67.7 through 14.67.31). This has been fixed in May 2024 (14.187.4), February 2024 Patch 4 (14.173.8), November 2023 Patch 9 (14.159.14), August 2023 Patch 14 (14.139.21), May 2023 Patch 16 (14.129.23), February 2023 Patch 14 (14.113.19), November 2022 Patch 14 (14.97.19), August 2022 Patch 17 (14.78.25), and May 2022 Patch 18 (14.67.34). 2024-05-22 8.8 CVE-2024-36077
[email protected]
n/a–n/a
 
In RTI Connext Professional 5.3.1 through 6.1.0 before 6.1.1, a buffer overflow in XML parsing from Routing Service, Recording Service, Queuing Service, and Cloud Discovery Service allows attackers to execute code with the affected service’s privileges, compromise the service’s integrity, leak sensitive information, or crash the service. These attacks could be done via a remote malicious RTPS message; a compromised call with malicious parameters to the RTI_RoutingService_new, rti::recording::Service, RTI_QueuingService_new, or RTI_CDS_Service_new public APIs; or a compromised local file system containing a malicious XML file. 2024-05-21 7.3 CVE-2024-25724
[email protected]
nextscripts–NextScripts: Social Networks Auto-Poster
 
The NextScripts: Social Networks Auto-Poster plugin for WordPress is vulnerable to Sensitive Information Exposure in all versions up to, and including, 4.4.3 via the ‘nxs_getExpSettings’ function. This makes it possible for authenticated attackers, with subscriber access and above, to extract sensitive data including social network API keys and secrets. 2024-05-22 8.5 CVE-2024-2088
[email protected]
[email protected]
[email protected]
opf–openproject
 
OpenProject is the leading open source project management software. OpenProject utilizes `tablesorter` inside of the Cost Report feature. This dependency, when misconfigured, can lead to Stored XSS via `{icon}` substitution in table header values. This attack requires the permissions “Edit work packages” as well as “Add attachments”. A project admin could attempt to escalate their privileges by sending this XSS to a System Admin. Otherwise, if a full System Admin is required, then this attack is significantly less impactful. By utilizing a ticket’s attachment, you can store javascript in the application itself and bypass the application’s CSP policy to achieve Stored XSS. This vulnerability has been patched in version(s) 14.1.0, 14.0.2 and 13.4.2. 2024-05-23 7.6 CVE-2024-35224
[email protected]
[email protected]
piotnetdotcom–Piotnet Addons For Elementor
 
The Piotnet Addons For Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via multiple widgets in all versions up to, and including, 2.4.28 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 7.2 CVE-2024-4262
[email protected]
[email protected]
requarks–wiki
 
Wiki.js is al wiki app built on Node.js. Client side template injection was discovered, that could allow an attacker to inject malicious JavaScript into the content section of pages that would execute once a victim loads the page that contains the payload. This was possible through the injection of a invalid HTML tag with a template injection payload on the next line. This vulnerability is fixed in 2.5.303. 2024-05-20 7.1 CVE-2024-34710
[email protected]
[email protected]
strategy11team–Business Directory Plugin Easy Listing Directories for WordPress
 
The Business Directory Plugin – Easy Listing Directories for WordPress plugin for WordPress is vulnerable to time-based SQL Injection via the ‘listingfields’ parameter in all versions up to, and including, 6.4.2 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. 2024-05-22 9.8 CVE-2024-4443
[email protected]
[email protected]
[email protected]
sudar–Email Log
 
The Email Log plugin for WordPress is vulnerable to Unauthenticated Hook Injection in all versions up to, and including, 2.4.8 via the check_nonce function. This makes it possible for unauthenticated attackers to execute actions with hooks in WordPress under certain circumstances. The action the attacker wishes to execute needs to have a nonce check, and the nonce needs to be known to the attacker. Furthermore, the absence of a capability check is a requirement. 2024-05-24 8.1 CVE-2024-0867
[email protected]
[email protected]
[email protected]
techjewel–Contact Form Plugin by Fluent Forms for Quiz, Survey, and Drag & Drop WP Form Builder
 
The Contact Form Plugin by Fluent Forms for Quiz, Survey, and Drag & Drop WP Form Builder plugin for WordPress is vulnerable to PHP Object Injection in all versions up to, and including, 5.1.15 via deserialization of untrusted input in the extractDynamicValues function. This makes it possible for authenticated attackers, with contributor-level access and above, to inject a PHP Object. If a POP chain is present via an additional plugin or theme installed on the target system, it could allow the attacker to delete arbitrary files, retrieve sensitive data, or execute code. Successful exploitation requires the attacker to have “View Form” and “Manage Form” permissions, which must be explicitly set by an administrator. However, this requirement can be bypassed when this vulnerability is chained with CVE-2024-2771. 2024-05-22 7.5 CVE-2024-4157
[email protected]
[email protected]
unitecms–Unlimited Elements For Elementor (Free Widgets, Addons, Templates)
 
The Unlimited Elements For Elementor (Free Widgets, Addons, Templates) plugin for WordPress is vulnerable to SQL Injection via the ‘data[post_ids][0]’ parameter in all versions up to, and including, 1.5.107 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. 2024-05-23 8.8 CVE-2024-4779
[email protected]
[email protected]
wordpresschef–Salon booking system
 
The Salon booking system plugin for WordPress is vulnerable to arbitrary file deletion in all versions up to, and including, 9.8. This is due to the plugin not properly validating the path of an uploaded file prior to deleting it. This makes it possible for unauthenticated attackers to delete arbitrary files, including the wp-config.php file, which can make site takeover and remote code execution possible. 2024-05-21 9.1 CVE-2024-4442
[email protected]
[email protected]
[email protected]
wpfeedback–Visual Website Collaboration, Feedback & Project Management Atarim
 
The Visual Website Collaboration, Feedback & Project Management – Atarim plugin for WordPress is vulnerable to unauthorized access in all versions up to, and including, 3.22.6. This is due to the use of hardcoded credentials to authenticate all the incoming API requests. This makes it possible for unauthenticated attackers to modify plugin settings, delete posts, modify post titles, and upload images. 2024-05-23 7.5 CVE-2024-2038
[email protected]
[email protected]
[email protected]
wpzoom–WPZOOM Addons for Elementor (Templates, Widgets)
 
The WPZOOM Addons for Elementor (Templates, Widgets) plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 1.1.37 via the ‘grid_style’ parameter. This makes it possible for unauthenticated attackers to include and execute arbitrary files on the server, allowing the execution of any PHP code in those files. This can be used to bypass access controls, obtain sensitive data, or achieve code execution in cases where images and other “safe” file types can be uploaded and included. 2024-05-22 9.8 CVE-2024-5147
[email protected]
[email protected]
[email protected]
[email protected]
xpro–140+ Widgets | Best Addons For Elementor FREE
 
The 140+ Widgets | Best Addons For Elementor – FREE for WordPress is vulnerable to PHP Object Injection in versions up to, and including, 1.4.3.1 via deserialization of untrusted input in the ‘export_content’ function. This allows authenticated attackers, with contributor-level permissions and above, to inject a PHP Object. No POP chain is present in the vulnerable plugin. If a POP chain is present via an additional plugin or theme installed on the target system, it could allow the attacker to delete arbitrary files, retrieve sensitive data, or execute code. Thanks, Francesco 2024-05-23 8 CVE-2024-4471
[email protected]
[email protected]
[email protected]
yithemes–YITH WooCommerce Ajax Search
 
The YITH WooCommerce Ajax Search plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘item’ parameter in versions up to, and including, 2.4.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 7.2 CVE-2024-4455
[email protected]
[email protected]
[email protected]

Back to top

Medium Vulnerabilities

Primary
Vendor — Product
Description Published CVSS Score Source & Patch Info
Arris–VAP2500
 
A vulnerability was found in Arris VAP2500 08.50. It has been declared as critical. Affected by this vulnerability is an unknown functionality of the file /assoc_table.php. The manipulation of the argument id leads to command injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265831. 2024-05-22 4.7 CVE-2024-5194
[email protected]
[email protected]
[email protected]
[email protected]
Arris–VAP2500
 
A vulnerability was found in Arris VAP2500 08.50. It has been rated as critical. Affected by this issue is some unknown functionality of the file /diag_s.php. The manipulation of the argument customer_info leads to command injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-265832. 2024-05-22 4.7 CVE-2024-5195
[email protected]
[email protected]
[email protected]
[email protected]
Arris–VAP2500
 
A vulnerability classified as critical has been found in Arris VAP2500 08.50. This affects an unknown part of the file /tools_command.php. The manipulation of the argument cmb_header/txt_command leads to command injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-265833 was assigned to this vulnerability. 2024-05-22 4.7 CVE-2024-5196
[email protected]
[email protected]
[email protected]
[email protected]
Byron–gitoxide
 
gitoxide is a pure Rust implementation of Git. On Windows, fetching refs that clash with legacy device names reads from the devices, and checking out paths that clash with such names writes arbitrary data to the devices. This allows a repository, when cloned, to cause indefinite blocking or the production of arbitrary message that appear to have come from the application, and potentially other harmful effects under limited circumstances. If Windows is not used, or untrusted repositories are not cloned or otherwise used, then there is no impact. A minor degradation in availability may also be possible, such as with a very large file named `CON`, though the user could interrupt the application. 2024-05-23 5.4 CVE-2024-35197
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability, which was classified as critical, has been found in Campcodes Complete Web-Based School Management System 1.0. This issue affects some unknown processing of the file /view/student_payment_details2.php. The manipulation of the argument index leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-265097 was assigned to this vulnerability. 2024-05-20 6.3 CVE-2024-5107
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability, which was classified as critical, was found in Campcodes Complete Web-Based School Management System 1.0. Affected is an unknown function of the file /view/student_payment_details4.php. The manipulation of the argument index leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. VDB-265098 is the identifier assigned to this vulnerability. 2024-05-20 6.3 CVE-2024-5108
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability has been found in Campcodes Complete Web-Based School Management System 1.0 and classified as critical. Affected by this vulnerability is an unknown functionality of the file /view/student_payment_history.php. The manipulation of the argument index leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265099. 2024-05-20 6.3 CVE-2024-5109
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability was found in Campcodes Complete Web-Based School Management System 1.0 and classified as critical. Affected by this issue is some unknown functionality of the file /view/student_payment_invoice.php. The manipulation of the argument index leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-265100. 2024-05-20 6.3 CVE-2024-5110
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability was found in Campcodes Complete Web-Based School Management System 1.0. It has been classified as critical. This affects an unknown part of the file /view/student_payment_invoice1.php. The manipulation of the argument date leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-265101 was assigned to this vulnerability. 2024-05-20 6.3 CVE-2024-5111
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability was found in Campcodes Complete Web-Based School Management System 1.0. It has been declared as critical. This vulnerability affects unknown code of the file /view/student_profile.php. The manipulation of the argument std_index leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. VDB-265102 is the identifier assigned to this vulnerability. 2024-05-20 6.3 CVE-2024-5112
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability was found in Campcodes Complete Web-Based School Management System 1.0. It has been rated as critical. This issue affects some unknown processing of the file /view/student_profile1.php. The manipulation of the argument std_index leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265103. 2024-05-20 6.3 CVE-2024-5113
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability classified as critical has been found in Campcodes Complete Web-Based School Management System 1.0. Affected is an unknown function of the file /view/teacher_attendance_history1.php. The manipulation of the argument index leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-265104. 2024-05-20 6.3 CVE-2024-5114
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability classified as critical was found in Campcodes Complete Web-Based School Management System 1.0. Affected by this vulnerability is an unknown functionality of the file /view/teacher_profile.php. The manipulation of the argument index leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-265105 was assigned to this vulnerability. 2024-05-20 6.3 CVE-2024-5115
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability was found in Campcodes Complete Web-Based School Management System 1.0 and classified as critical. Affected by this issue is some unknown functionality of the file /view/teacher_salary_details.php. The manipulation of the argument index leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. VDB-265982 is the identifier assigned to this vulnerability. 2024-05-23 6.3 CVE-2024-5231
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability was found in Campcodes Complete Web-Based School Management System 1.0. It has been classified as critical. This affects an unknown part of the file /view/teacher_salary_details2.php. The manipulation of the argument index leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265983. 2024-05-23 6.3 CVE-2024-5232
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability was found in Campcodes Complete Web-Based School Management System 1.0. It has been declared as critical. This vulnerability affects unknown code of the file /view/teacher_salary_details3.php. The manipulation of the argument index leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-265984. 2024-05-23 6.3 CVE-2024-5233
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability was found in Campcodes Complete Web-Based School Management System 1.0. It has been rated as critical. This issue affects some unknown processing of the file /view/teacher_salary_history1.php. The manipulation of the argument index leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-265985 was assigned to this vulnerability. 2024-05-23 6.3 CVE-2024-5234
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability classified as critical has been found in Campcodes Complete Web-Based School Management System 1.0. Affected is an unknown function of the file /view/teacher_salary_invoice.php. The manipulation of the argument teacher_id leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. VDB-265986 is the identifier assigned to this vulnerability. 2024-05-23 6.3 CVE-2024-5235
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability classified as critical was found in Campcodes Complete Web-Based School Management System 1.0. Affected by this vulnerability is an unknown functionality of the file /view/teacher_salary_invoice1.php. The manipulation of the argument date leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265987. 2024-05-23 6.3 CVE-2024-5236
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability, which was classified as critical, has been found in Campcodes Complete Web-Based School Management System 1.0. Affected by this issue is some unknown functionality of the file /view/timetable_grade_wise.php. The manipulation of the argument grade leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-265988. 2024-05-23 6.3 CVE-2024-5237
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability, which was classified as critical, was found in Campcodes Complete Web-Based School Management System 1.0. This affects an unknown part of the file /view/timetable_insert_form.php. The manipulation of the argument grade leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-265989 was assigned to this vulnerability. 2024-05-23 6.3 CVE-2024-5238
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability has been found in Campcodes Complete Web-Based School Management System 1.0 and classified as critical. This vulnerability affects unknown code of the file /view/timetable_update_form.php. The manipulation of the argument grade leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. VDB-265990 is the identifier assigned to this vulnerability. 2024-05-23 6.3 CVE-2024-5239
[email protected]
[email protected]
[email protected]
[email protected]
Campcodes–Complete Web-Based School Management System
 
A vulnerability was found in Campcodes Complete Web-Based School Management System 1.0 and classified as critical. This issue affects some unknown processing of the file /view/unread_msg.php. The manipulation of the argument my_index leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265991. 2024-05-23 6.3 CVE-2024-5240
[email protected]
[email protected]
[email protected]
[email protected]
Cisco–Cisco Adaptive Security Appliance (ASA) Software
 
A vulnerability in the activation of an access control list (ACL) on Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass the protection that is offered by a configured ACL on an affected device. This vulnerability is due to a logic error that occurs when an ACL changes from inactive to active in the running configuration of an affected device. An attacker could exploit this vulnerability by sending traffic through the affected device that should be denied by the configured ACL. The reverse condition is also true-traffic that should be permitted could be denied by the configured ACL. A successful exploit could allow the attacker to bypass configured ACL protections on the affected device, allowing the attacker to access trusted networks that the device might be protecting. Note: This vulnerability applies to both IPv4 and IPv6 traffic as well as dual-stack ACL configurations in which both IPv4 and IPv6 ACLs are configured on an interface. 2024-05-22 5.8 CVE-2024-20293
[email protected]
Cisco–Cisco Adaptive Security Appliance (ASA) Software
 
A vulnerability in the implementation of SAML 2.0 single sign-on (SSO) for remote access VPN services in Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, remote attacker to successfully establish a VPN session on an affected device. This vulnerability is due to improper separation of authorization domains when using SAML authentication. An attacker could exploit this vulnerability by using valid credentials to successfully authenticate using their designated connection profile (tunnel group), intercepting the SAML SSO token that is sent back from the Cisco ASA device, and then submitting the same SAML SSO token to a different tunnel group for authentication. A successful exploit could allow the attacker to establish a remote access VPN session using a connection profile that they are not authorized to use and connect to secured networks behind the affected device that they are not authorized to access. For successful exploitation, the attacker must have valid remote access VPN user credentials. 2024-05-22 5 CVE-2024-20355
[email protected]
Cisco–Cisco Firepower Management Center
 
A vulnerability in the Object Groups for Access Control Lists (ACLs) feature of Cisco Firepower Management Center (FMC) Software could allow an unauthenticated, remote attacker to bypass configured access controls on managed devices that are running Cisco Firepower Threat Defense (FTD) Software. This vulnerability is due to the incorrect deployment of the Object Groups for ACLs feature from Cisco FMC Software to managed FTD devices in high-availability setups. After an affected device is rebooted following Object Groups for ACLs deployment, an attacker can exploit this vulnerability by sending traffic through the affected device. A successful exploit could allow the attacker to bypass configured access controls and successfully send traffic to devices that are expected to be protected by the affected device. 2024-05-22 5.8 CVE-2024-20361
[email protected]
Cisco–Cisco Firepower Threat Defense Software
 
A vulnerability in the file policy feature that is used to inspect encrypted archive files of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass a configured file policy to block an encrypted archive file. This vulnerability exists because of a logic error when a specific class of encrypted archive files is inspected. An attacker could exploit this vulnerability by sending a crafted, encrypted archive file through the affected device. A successful exploit could allow the attacker to send an encrypted archive file, which could contain malware and should have been blocked and dropped at the Cisco FTD device. 2024-05-22 5.8 CVE-2024-20261
[email protected]
Cisco–Cisco Firepower Threat Defense Software
 
Multiple Cisco products are affected by a vulnerability in the Snort Intrusion Prevention System (IPS) rule engine that could allow an unauthenticated, remote attacker to bypass the configured rules on an affected system. This vulnerability is due to incorrect HTTP packet handling. An attacker could exploit this vulnerability by sending crafted HTTP packets through an affected device. A successful exploit could allow the attacker to bypass configured IPS rules and allow uninspected traffic onto the network. 2024-05-22 5.8 CVE-2024-20363
[email protected]
Dell–Dell BSAFE Crypto-C Micro Edition
 
Dell BSAFE Crypto-C Micro Edition, versions before 4.1.5, and Dell BSAFE Micro Edition Suite, versions before 4.6, contain an Observable Timing Discrepancy Vulnerability. 2024-05-22 5.1 CVE-2020-35165
[email protected]
Eclipse Foundation–Eclipse Ditto
 
In Eclipse Ditto versions 3.0.0 to 3.5.5, the user input of several input fields of the Eclipse Ditto Explorer User Interface https://eclipse.dev/ditto/user-interface.html was not properly neutralized and thus vulnerable to both Reflected and Stored XSS (Cross Site Scripting). Several inputs were not persisted at the backend of Eclipse Ditto, but only in local browser storage to save settings of “environments” of the UI and e.g. the last performed “search queries”, resulting in a “Reflected XSS” vulnerability. However, several other inputs were persisted at the backend of Eclipse Ditto, leading to a “Stored XSS” vulnerability. Those mean that authenticated and authorized users at Eclipse Ditto can persist Things in Ditto which can – when being displayed by other users also being authorized to see those Things in the Eclipse Ditto UI – cause scripts to be executed in the browser of other users. 2024-05-23 6.5 CVE-2024-5165
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
EnvaySoft–FleetCart
 
A vulnerability has been found in EnvaySoft FleetCart up to 4.1.1 and classified as problematic. Affected by this vulnerability is an unknown functionality. The manipulation of the argument razorpayKeyId leads to information disclosure. The attack can be launched remotely. It is recommended to upgrade the affected component. The identifier VDB-265981 was assigned to this vulnerability. 2024-05-23 5.3 CVE-2024-5230
[email protected]
[email protected]
[email protected]
GitLab–GitLab
 
An issue has been discovered in GitLab CE/EE affecting all versions before 16.10.6, version 16.11 before 16.11.3, and 17.0 before 17.0.1. A runner registered with a crafted description has the potential to disrupt the loading of targeted GitLab web resources. 2024-05-23 6.5 CVE-2024-2874
[email protected]
[email protected]
GitLab–GitLab
 
A CSRF vulnerability exists within GitLab CE/EE from versions 13.11 before 16.10.6, from 16.11 before 16.11.3, from 17.0 before 17.0.1. By leveraging this vulnerability, an attacker could exfiltrate anti-CSRF tokens via the Kubernetes Agent Server (KAS). 2024-05-23 5.4 CVE-2023-7045
[email protected]
[email protected]
GitLab–GitLab
 
A Denial of Service (DoS) condition has been discovered in GitLab CE/EE affecting all versions before 16.10.6, version 16.11 before 16.11.3, and 17.0 before 17.0.1. It is possible for an attacker to cause a denial of service using a crafted wiki page. 2024-05-23 4.3 CVE-2023-6502
[email protected]
[email protected]
GitLab–GitLab
 
A denial of service (DoS) condition was discovered in GitLab CE/EE affecting all versions from 13.2.4 before 16.10.6, 16.11 before 16.11.3, and 17.0 before 17.0.1. By leveraging this vulnerability an attacker could create a DoS condition by sending crafted API calls. 2024-05-23 4.3 CVE-2024-1947
[email protected]
[email protected]
GitLab–GitLab
 
An authorization vulnerability exists within GitLab from versions 16.10 before 16.10.6, 16.11 before 16.11.3, and 17.0 before 17.0.1 where an authenticated attacker could utilize a crafted naming convention to bypass pipeline authorization logic. 2024-05-23 4.4 CVE-2024-5258
[email protected]
GitLab–GitLab
 
An issue has been discovered in GitLab CE/EE affecting all versions starting from 11.11 prior to 16.10.6, starting from 16.11 prior to 16.11.3, and starting from 17.0 prior to 17.0.1. A Guest user can view dependency lists of private projects through job artifacts. 2024-05-24 4 CVE-2024-5318
[email protected]
[email protected]
Google Cloud–Looker
 
An Insecure Direct Object Reference in Google Cloud’s Looker allowed metadata exposure across authenticated Looker users sharing the same LookML model. 2024-05-22 6.5 CVE-2024-5166
[email protected]
Huashi–Private Cloud CDN Live Streaming Acceleration Server
 
A vulnerability was found in Huashi Private Cloud CDN Live Streaming Acceleration Server up to 20240520. It has been classified as critical. Affected is an unknown function of the file /manager/ipconfig_new.php. The manipulation of the argument dev leads to os command injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-265992. 2024-05-23 4.7 CVE-2024-5241
[email protected]
[email protected]
[email protected]
[email protected]
IBM–App Connect Enterprise
 
IBM App Connect Enterprise 11.0.0.1 through 11.0.0.25 and 12.0.1.0 through 12.0.12.0 integration nodes could allow an authenticated user to cause a denial of service due to an uncaught exception. IBM X-Force ID: 289647. 2024-05-22 6.5 CVE-2024-31904
[email protected]
[email protected]
IBM–App Connect Enterprise
 
IBM App Connect Enterprise 12.0.1.0 through 12.0.12.1 could allow an authenticated user to obtain sensitive calendar information using an expired access token. IBM X-Force ID: 288174. 2024-05-22 4.3 CVE-2024-31893
[email protected]
[email protected]
IBM–App Connect Enterprise
 
IBM App Connect Enterprise 12.0.1.0 through 12.0.12.1 could allow an authenticated user to obtain sensitive user information using an expired access token. IBM X-Force ID: 288175. 2024-05-22 4.3 CVE-2024-31894
[email protected]
[email protected]
IBM–App Connect Enterprise
 
IBM App Connect Enterprise 12.0.1.0 through 12.0.12.1 could allow an authenticated user to obtain sensitive user information using an expired access token. IBM X-Force ID: 288176. 2024-05-22 4.3 CVE-2024-31895
[email protected]
[email protected]
IBM–Security Guardium
 
IBM Security Guardium 11.4, 11.5, and 12.0 is vulnerable to cross-site scripting. This vulnerability allows users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. IBM X-Force ID: 271525. 2024-05-24 5.4 CVE-2023-47710
[email protected]
[email protected]
Internet Computer–ic-stable-structures
 
When storing unbounded types in a BTreeMap, a node is represented as a linked list of “memory chunks”. It was discovered recently that when we deallocate a node, in some cases only the first memory chunk is deallocated, and the rest of the memory chunks remain (incorrectly) allocated, causing a memory leak. In the worst case, depending on how a canister uses the BTreeMap, an adversary could interact with the canister through its API and trigger interactions with the map that keep consuming memory due to the memory leak. This could potentially lead to using an excessive amount of memory, or even running out of memory. This issue has been fixed in #212 https://github.com/dfinity/stable-structures/pull/212  by changing the logic for deallocating nodes to ensure that all of a node’s memory chunks are deallocated and users are asked to upgrade to version 0.6.4.. Tests have been added to prevent regressions of this nature moving forward. Note: Users of stable-structure < 0.6.0 are not affected. Users who are not storing unbounded types in BTreeMap are not affected and do not need to upgrade. Otherwise, an upgrade to version 0.6.4 is necessary. 2024-05-21 5.9 CVE-2024-4435
6b35d637-e00f-4228-858c-b20ad6e1d07b
6b35d637-e00f-4228-858c-b20ad6e1d07b
6b35d637-e00f-4228-858c-b20ad6e1d07b
LayerSlider–LayerSlider
 
The LayerSlider plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ls_search_form shortcode in version 7.11.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-4575
[email protected]
[email protected]
ManageEngine–ADAudit Plus
 
Zoho ManageEngine ADAudit Plus versions below 7271 allows SQL Injection in lockout history option. Note: Non-admin users cannot exploit this vulnerability. 2024-05-22 4.7 CVE-2024-21791
0fc0942c-577d-436f-ae8e-945763c79b02
MemberPress–Memberpress
 
The Memberpress plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘arglist’ parameter in all versions up to, and including, 1.11.29 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-5025
[email protected]
[email protected]
PHP Server Monitor–PHP Server Monitor
 
PHP Server Monitor, version 3.2.0, is vulnerable to an XSS via the /phpservermon-3.2.0/vendor/phpmailer/phpmailer/test_script/index.php page in all visible parameters. An attacker could create a specially crafted URL, send it to a victim and retrieve their session details. 2024-05-24 6.3 CVE-2024-5312
[email protected]
Progress Software Corporation–MOVEit Automation
 
The Progress MOVEit Automation configuration export function prior to 2024.0.0 uses a cryptographic method with insufficient bit length. 2024-05-22 6.1 CVE-2024-4563
[email protected]
[email protected]
QNAP Systems Inc.–QTS
 
An incorrect permission assignment for critical resource vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated users to read or modify the resource via a network. We have already fixed the vulnerability in the following version: QTS 5.1.7.2770 build 20240520 and later QuTS hero h5.1.7.2770 build 20240520 and later 2024-05-21 6.4 CVE-2024-21902
[email protected]
QNAP Systems Inc.–QTS
 
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated users to execute code via a network. We have already fixed the vulnerability in the following version: QTS 5.1.7.2770 build 20240520 and later QuTS hero h5.1.7.2770 build 20240520 and later 2024-05-21 6.4 CVE-2024-27128
[email protected]
QNAP Systems Inc.–QTS
 
A buffer copy without checking size of input vulnerability has been reported to affect several QNAP operating system versions. If exploited, the vulnerability could allow authenticated users to execute code via a network. We have already fixed the vulnerability in the following version: QTS 5.1.7.2770 build 20240520 and later QuTS hero h5.1.7.2770 build 20240520 and later 2024-05-21 6.4 CVE-2024-27129
[email protected]
Ritlabs–TinyWeb Server
 
A vulnerability was found in Ritlabs TinyWeb Server 1.94. It has been classified as problematic. Affected is an unknown function of the component Request Handler. The manipulation with the input %0D%0A leads to crlf injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. VDB-265830 is the identifier assigned to this vulnerability. NOTE: The vendor was contacted early about this disclosure but did not respond in any way. 2024-05-22 5.3 CVE-2024-5193
[email protected]
[email protected]
[email protected]
[email protected]
Ruijie–RG-UAC
 
A vulnerability has been found in Ruijie RG-UAC up to 20240516 and classified as critical. This vulnerability affects the function addVlan of the file /view/networkConfig/vlan/vlan_add_commit.php. The manipulation of the argument phyport leads to os command injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. VDB-266242 is the identifier assigned to this vulnerability. NOTE: The vendor was contacted early about this disclosure but did not respond in any way. 2024-05-25 4.7 CVE-2024-5336
[email protected]
[email protected]
[email protected]
[email protected]
Ruijie–RG-UAC
 
A vulnerability was found in Ruijie RG-UAC up to 20240516 and classified as critical. This issue affects some unknown processing of the file /view/systemConfig/sys_user/user_commit.php. The manipulation of the argument email2/user_name leads to os command injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-266243. NOTE: The vendor was contacted early about this disclosure but did not respond in any way. 2024-05-25 4.7 CVE-2024-5337
[email protected]
[email protected]
[email protected]
[email protected]
Ruijie–RG-UAC
 
A vulnerability was found in Ruijie RG-UAC up to 20240516. It has been classified as critical. Affected is an unknown function of the file /view/vpn/autovpn/online.php. The manipulation of the argument peernode leads to os command injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-266244. NOTE: The vendor was contacted early about this disclosure but did not respond in any way. 2024-05-25 4.7 CVE-2024-5338
[email protected]
[email protected]
[email protected]
[email protected]
Ruijie–RG-UAC
 
A vulnerability was found in Ruijie RG-UAC up to 20240516. It has been declared as critical. Affected by this vulnerability is an unknown functionality of the file /view/vpn/autovpn/online_check.php. The manipulation of the argument peernode leads to os command injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-266245 was assigned to this vulnerability. NOTE: The vendor was contacted early about this disclosure but did not respond in any way. 2024-05-25 4.7 CVE-2024-5339
[email protected]
[email protected]
[email protected]
[email protected]
Ruijie–RG-UAC
 
A vulnerability was found in Ruijie RG-UAC up to 20240516. It has been rated as critical. Affected by this issue is some unknown functionality of the file /view/vpn/autovpn/sub_commit.php. The manipulation of the argument key leads to os command injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. VDB-266246 is the identifier assigned to this vulnerability. NOTE: The vendor was contacted early about this disclosure but did not respond in any way. 2024-05-25 4.7 CVE-2024-5340
[email protected]
[email protected]
[email protected]
[email protected]
SevenSpark–UberMenu
 
The UberMenu plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ubermenu-col, ubermenu_mobile_close_button, ubermenu_toggle, ubermenu-search shortcodes in all versions up to, and including, 3.8.2 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-4710
[email protected]
[email protected]
SourceCodester–Electricity Consumption Monitoring Tool
 
A vulnerability was found in SourceCodester Electricity Consumption Monitoring Tool 1.0. It has been declared as critical. This vulnerability affects unknown code of the file /endpoint/delete-bill.php. The manipulation of the argument bill leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. VDB-265210 is the identifier assigned to this vulnerability. 2024-05-20 6.3 CVE-2024-5134
[email protected]
[email protected]
[email protected]
[email protected]
SourceCodester–Event Registration System
 
A vulnerability was found in SourceCodester Event Registration System 1.0 and classified as critical. This issue affects some unknown processing of the file /classes/Master.php?f=load_registration. The manipulation of the argument last_id/event_id leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265199. 2024-05-20 6.3 CVE-2024-5119
[email protected]
[email protected]
[email protected]
[email protected]
SourceCodester–Event Registration System
 
A vulnerability was found in SourceCodester Event Registration System 1.0. It has been classified as critical. Affected is an unknown function of the file /registrar/?page=registration. The manipulation of the argument e leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-265200. 2024-05-20 6.3 CVE-2024-5120
[email protected]
[email protected]
[email protected]
[email protected]
SourceCodester–Event Registration System
 
A vulnerability classified as problematic has been found in SourceCodester Event Registration System 1.0. This affects an unknown part of the file /registrar/. The manipulation of the argument searchbar leads to cross site scripting. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-265203. 2024-05-20 4.3 CVE-2024-5123
[email protected]
[email protected]
[email protected]
[email protected]
SourceCodester–Vehicle Management System
 
A vulnerability was found in SourceCodester Vehicle Management System up to 1.0 and classified as critical. This issue affects some unknown processing of the file /newdriver.php of the component HTTP POST Request Handler. The manipulation of the argument file leads to unrestricted upload. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-265289 was assigned to this vulnerability. 2024-05-20 6.3 CVE-2024-5145
[email protected]
[email protected]
[email protected]
[email protected]
Thales–Luna EFT
 
Network Transfer with AES KHT in Thales Luna EFT 2.1 and above allows a user with administrative console access to access backups taken via offline analysis 2024-05-23 5.9 CVE-2024-5264
[email protected]
ZkTeco–ZkTeco-based OEM devices with firmware ZAM170-NF-1.8.25-7354-Ver1.0.0
 
Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection’) vulnerability in ZkTeco-based OEM devices allows an attacker to authenticate under any user from the device database. This issue affects  ZkTeco-based OEM devices (ZkTeco ProFace X, Smartec ST-FR043, Smartec ST-FR041ME and possibly others) with the ZAM170-NF-1.8.25-7354-Ver1.0.0 and possibly others. 2024-05-21 4.6 CVE-2023-3938
[email protected]
Zyxel–DX3300-T1 firmware
 
The buffer overflow vulnerability in the DX3300-T1 firmware version V5.50(ABVY.4)C0 could allow an authenticated local attacker to cause denial of service (DoS) conditions by executing the CLI command with crafted strings on an affected device. 2024-05-21 5.5 CVE-2024-0816
[email protected]
Zyxel–V5.50(ABPM.8)C0 firmware
 
The buffer overflow vulnerability in the CGI program of the VMG3625-T50B firmware version V5.50(ABPM.8)C0 could allow an authenticated remote attacker to cause denial of service (DoS) conditions by sending a crafted HTTP request to a vulnerable device. 2024-05-21 6.5 CVE-2023-37929
[email protected]
anji-plus–AJ-Report
 
A vulnerability was found in anji-plus AJ-Report up to 1.4.1. It has been classified as critical. Affected is the function pageList of the file /pageList. The manipulation of the argument p leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. VDB-266262 is the identifier assigned to this vulnerability. 2024-05-25 6.3 CVE-2024-5350
[email protected]
[email protected]
[email protected]
[email protected]
aquasecurity–trivy
 
Trivy is a security scanner. Prior to 0.51.2, if a malicious actor is able to trigger Trivy to scan container images from a crafted malicious registry, it could result in the leakage of credentials for legitimate registries such as AWS Elastic Container Registry (ECR), Google Cloud Artifact/Container Registry, or Azure Container Registry (ACR). These tokens can then be used to push/pull images from those registries to which the identity/user running Trivy has access. Systems are not affected if the default credential provider chain is unable to obtain valid credentials. This vulnerability only applies when scanning container images directly from a registry. This vulnerability is fixed in 0.51.2. 2024-05-20 5.5 CVE-2024-35192
[email protected]
[email protected]
aruphash–Elegant Addons for elementor
 
The Elegant Addons for elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s widgets in all versions up to, and including, 1.0.8 due to insufficient input sanitization and output escaping on user supplied tag attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-3066
[email protected]
[email protected]
aruphash–Elegant Addons for elementor
 
The Elegant Addons for elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s Switcher, Slider, and Iconbox widgets in all versions up to, and including, 1.0.8 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-5092
[email protected]
[email protected]
[email protected]
[email protected]
averta–Master Slider Responsive Touch Slider
 
The Master Slider – Responsive Touch Slider plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘ms_slide_info’ shortcode in all versions up to, and including, 3.9.9 due to insufficient input sanitization and output escaping on user supplied ‘tag_name’ attribute. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-4470
[email protected]
[email protected]
[email protected]
baden03–Print-O-Matic
 
The Print-O-Matic plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘print-me’ shortcode in all versions up to, and including, 2.1.10 due to insufficient input sanitization and output escaping on user supplied attributes such as ‘tag’. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-3671
[email protected]
[email protected]
baden03–jQuery T(-) Countdown Widget
 
The jQuery T(-) Countdown Widget plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s tminus shortcode in all versions up to, and including, 2.3.25 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-4783
[email protected]
[email protected]
bastho–Event post
 
The Event post plugin for WordPress is vulnerable to unauthorized bulk metadata update due to a missing capability check on the save_bulkdatas function in all versions up to, and including, 5.9.4. This makes it possible for authenticated attackers, with subscriber access or higher, to update post_meta_data. 2024-05-24 4.3 CVE-2024-1376
[email protected]
[email protected]
bdthemes–Element Pack Elementor Addons (Header Footer, Template Library, Dynamic Grid & Carousel, Remote Arrows)
 
The Element Pack Elementor Addons (Header Footer, Template Library, Dynamic Grid & Carousel, Remote Arrows) plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the custom_attributes value in widgets in all versions up to, and including, 5.6.1 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-3926
[email protected]
[email protected]
[email protected]
bdthemes–Element Pack Elementor Addons (Header Footer, Template Library, Dynamic Grid & Carousel, Remote Arrows)
 
The Element Pack Elementor Addons (Header Footer, Template Library, Dynamic Grid & Carousel, Remote Arrows) plugin for WordPress is vulnerable to Form Submission Admin Email Bypass in all versions up to, and including, 5.6.3. This is due to the plugin not properly checking for all variations of an administrators emails. This makes it possible for unauthenticated attackers to bypass the restriction using a +value when submitting the contact form. 2024-05-22 5.3 CVE-2024-3927
[email protected]
[email protected]
[email protected]
bdthemes–Prime Slider Addons For Elementor (Revolution of a slider, Hero Slider, Ecommerce Slider)
 
The Prime Slider – Addons For Elementor (Revolution of a slider, Hero Slider, Ecommerce Slider) plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s Pagepiling widget in all versions up to, and including, 3.14.1 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-3997
[email protected]
[email protected]
brainstormforce–Custom Fonts Host Your Fonts Locally
 
The Custom Fonts – Host Your Fonts Locally plugin for WordPress is vulnerable to Stored Cross-Site Scripting via svg file upload in all versions up to, and including, 2.1.4 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with author level or higher, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-1332
[email protected]
[email protected]
brainstormforce–Elementor Header & Footer Builder
 
The Elementor Header & Footer Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the size attribute in all versions up to, and including, 1.6.26 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor access or higher, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-2618
[email protected]
[email protected]
[email protected]
brainstormforce–Spectra WordPress Gutenberg Blocks
 
The Spectra – WordPress Gutenberg Blocks plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s Testimonial block in all versions up to, and including, 2.12.8 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-1814
[email protected]
[email protected]
brainstormforce–Spectra WordPress Gutenberg Blocks
 
The Spectra – WordPress Gutenberg Blocks plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s Image Gallery block in all versions up to, and including, 2.12.8 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-1815
[email protected]
[email protected]
brainstormforce–Spectra WordPress Gutenberg Blocks
 
The Spectra – WordPress Gutenberg Blocks plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘block_id’ parameter in versions up to, and including, 2.13.0 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with author-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-4366
[email protected]
[email protected]
brechtvds–WP Ultimate Post Grid
 
The WP Ultimate Post Grid plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘wpupg-text’ shortcode in all versions up to, and including, 3.9.1 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-4043
[email protected]
[email protected]
[email protected]
[email protected]
choijun–LA-Studio Element Kit for Elementor
 
The LA-Studio Element Kit for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘id’ parameter in all versions up to, and including, 1.3.7.6 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-4431
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
collizo4sky–Paid Membership Plugin, Ecommerce, User Registration Form, Login Form, User Profile & Restrict Content ProfilePress
 
The ProfilePress plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ProfilePress User Panel widget in all versions up to, and including, 4.15.8 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-2861
[email protected]
[email protected]
creativethemeshq–Blocksy
 
The Blocksy theme for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘has_field_link_rel’ parameter in all versions up to, and including, 2.0.46 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-4943
[email protected]
[email protected]
dapr–dapr
 
Dapr is a portable, event-driven, runtime for building distributed applications across cloud and edge. Dapr sends the app token of the invoker app instead of the app token of the invoked app. This causes of a leak of the application token of the invoker app to the invoked app when using Dapr as a gRPC proxy for remote service invocation. This vulnerability impacts Dapr users who use Dapr as a gRPC proxy for remote service invocation as well as the Dapr App API token functionality. An attacker could exploit this vulnerability to gain access to the app token of the invoker app, potentially compromising security and authentication mechanisms. This vulnerability was patched in version 1.13.3. 2024-05-23 5.3 CVE-2024-35223
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
daveshine–Toolbar Extras for Elementor & More WordPress Admin Bar Enhanced
 
The Toolbar Extras for Elementor & More – WordPress Admin Bar Enhanced plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘tbex-version’ shortcode in all versions up to, and including, 1.4.9 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-3611
[email protected]
[email protected]
designextreme–Reviews and Rating Google Reviews
 
The Reviews and Rating – Google Reviews plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s file upload feature in all versions up to, and including, 5.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Author-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-25 6.4 CVE-2024-5218
[email protected]
[email protected]
[email protected]
devitemsllc–HT Mega Absolute Addons For Elementor
 
The HT Mega – Absolute Addons For Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘popover_header_text’ parameter in versions up to, and including, 2.5.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-4876
[email protected]
[email protected]
[email protected]
devitemsllc–HT Mega Absolute Addons For Elementor
 
The HT Mega – Absolute Addons For Elementor plugin for WordPress is vulnerable to unauthorized modification of data|loss of data due to a missing capability check on the ‘ajax_dismiss’ function in versions up to, and including, 2.5.2. This makes it possible for authenticated attackers, with subscriber-level permissions and above, to update options such as users_can_register, which can lead to unauthorized user registration. 2024-05-21 4.3 CVE-2024-4875
[email protected]
[email protected]
[email protected]
devitemsllc–ShopLentor WooCommerce Builder for Elementor & Gutenberg +12 Modules All in One Solution (formerly WooLentor)
 
The ShopLentor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s woolentorsearch shortcode in all versions up to, and including, 2.8.8 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-3345
[email protected]
[email protected]
[email protected]
dglingren–Media Library Assistant
 
The Media Library Assistant plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the lang parameter in all versions up to, and including, 3.15 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link. 2024-05-22 6.1 CVE-2024-3519
[email protected]
[email protected]
elemntor–Elementor Website Builder More than Just a Page Builder
 
The Elementor Website Builder – More than Just a Page Builder plugin for WordPress is vulnerable to DOM-Based Stored Cross-Site Scripting via the ‘hover_animation’ parameter in versions up to, and including, 3.21.4 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-4619
[email protected]
[email protected]
[email protected]
emarket-design–YouTube Video Gallery by YouTube Showcase Video Gallery Plugin for WordPress
 
The YouTube Video Gallery by YouTube Showcase – Video Gallery Plugin for WordPress plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the emd_form_builder_lite_submit_form function in all versions up to, and including, 3.3.6. This makes it possible for unauthenticated attackers to create arbitrary posts or pages. 2024-05-21 5.3 CVE-2024-3268
[email protected]
[email protected]
farhannoor–ApplyOnline Application Form Builder and Manager
 
The ApplyOnline – Application Form Builder and Manager plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the aol_modal_box AJAX action in all versions up to, and including, 2.6. This makes it possible for authenticated attackers, with subscriber access or higher, to view Application submissions. 2024-05-22 4.3 CVE-2024-2036
[email protected]
[email protected]
gn_themes–WP Shortcodes Plugin Shortcodes Ultimate
 
The WP Shortcodes Plugin – Shortcodes Ultimate plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘su_members’ shortcode in all versions up to, and including, 7.1.5 due to insufficient input sanitization and output escaping on user supplied ‘color’ attribute. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-4553
[email protected]
[email protected]
[email protected]
gpriday–Page Builder by SiteOrigin
 
The Page Builder by SiteOrigin plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘siteorigin_widget’ shortcode in all versions up to, and including, 2.29.15 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-4361
[email protected]
[email protected]
[email protected]
gpriday–SiteOrigin Widgets Bundle
 
The SiteOrigin Widgets Bundle plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘siteorigin_widget’ shortcode in all versions up to, and including, 1.60.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-4362
[email protected]
[email protected]
[email protected]
hashthemes–Hash Elements
 
The Hash Elements plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘url’ parameter within multiple widgets in all versions up to, and including, 1.3.8 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-5177
[email protected]
[email protected]
[email protected]
icegram–Email Subscribers by Icegram Express Email Marketing, Newsletters, Automation for WordPress & WooCommerce
 
The Email Subscribers by Icegram Express – Email Marketing, Newsletters, Automation for WordPress & WooCommerce plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the get_template_content function in all versions up to, and including, 5.7.17. This makes it possible for authenticated attackers, with subscriber access and above, to obtain the contents of private and password-protected posts. 2024-05-23 4.3 CVE-2024-3626
[email protected]
[email protected]
[email protected]
[email protected]
ivanti — endpoint_manager_mobile
 
A local privilege escalation vulnerability in EPMM before 12.1.0.0 allows an authenticated local user to bypass shell restriction and execute arbitrary commands on the appliance. 2024-05-22 6.7 CVE-2024-22026
[email protected]
juangirini–Automatic Translator with Google Translate
 
The Automatic Translator with Google Translate plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the custom font setting in all versions up to, and including, 1.5.4 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level access, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled. 2024-05-22 4.4 CVE-2024-0632
[email protected]
[email protected]
jupyter-server–jupyter-scheduler
 
Jupyter Scheduler is collection of extensions for programming jobs to run now or run on a schedule. The list of conda environments of `jupyter-scheduler` users maybe be exposed, potentially revealing information about projects that a specific user may be working on. This vulnerability has been patched in version(s) 1.1.6, 1.2.1, 1.8.2 and 2.5.2. 2024-05-23 5.3 CVE-2024-28188
[email protected]
[email protected]
justin_k–WP-ViperGB
 
The WP-ViperGB plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.6.1. This is due to missing or incorrect nonce validation when saving plugin settings. This makes it possible for unauthenticated attackers to change the plugin’s settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. 2024-05-24 4.3 CVE-2024-4409
[email protected]
[email protected]
kapasias–LottieFiles JSON Based Animation Lottie & Bodymovin for Elementor
 
The LottieFiles – JSON Based Animation Lottie & Bodymovin for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting in all versions up to, and including, 1.10.9 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-5060
[email protected]
[email protected]
[email protected]
leap13–Premium Addons for Elementor
 
The Premium Addons for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s menu and shape widgets in all versions up to, and including, 4.10.30 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-4378
[email protected]
[email protected]
[email protected]
[email protected]
legalweb–WP DSGVO Tools (GDPR)
 
The WP DSGVO Tools (GDPR) plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘pp_link’ shortcode in all versions up to, and including, 3.1.32 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-3201
[email protected]
[email protected]
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid NULL dereference of timing generator [Why & How] Check whether assigned timing generator is NULL or not before accessing its funcs to prevent NULL dereference. 2024-05-21 5.5 CVE-2023-52753
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix a NULL pointer dereference in amdgpu_dm_i2c_xfer() When ddc_service_construct() is called, it explicitly checks both the link type and whether there is something on the link which will dictate whether the pin is marked as hw_supported. If the pin isn’t set or the link is not set (such as from unloading/reloading amdgpu in an IGT test) then fail the amdgpu_dm_i2c_xfer() call. 2024-05-21 5.5 CVE-2023-52773
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: net: wangxun: fix kernel panic due to null pointer When the device uses a custom subsystem vendor ID, the function wx_sw_init() returns before the memory of ‘wx->mac_table’ is allocated. The null pointer will causes the kernel panic. 2024-05-21 5.5 CVE-2023-52783
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: iio: adc: stm32-adc: harden against NULL pointer deref in stm32_adc_probe() of_match_device() may fail and returns a NULL pointer. In practice there is no known reasonable way to trigger this, but in case one is added in future, harden the code by adding the check 2024-05-21 5.5 CVE-2023-52802
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: Fix possible null-ptr-deref when assigning a stream While AudioDSP drivers assign streams exclusively of HOST or LINK type, nothing blocks a user to attempt to assign a COUPLED stream. As supplied substream instance may be a stub, what is the case when code-loading, such scenario ends with null-ptr-deref. 2024-05-21 5.5 CVE-2023-52806
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: scsi: libfc: Fix potential NULL pointer dereference in fc_lport_ptp_setup() fc_lport_ptp_setup() did not check the return value of fc_rport_create() which can return NULL and would cause a NULL pointer dereference. Address this issue by checking return value of fc_rport_create() and log error message on fc_rport_create() failed. 2024-05-21 5.5 CVE-2023-52809
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix potential null pointer derefernce The amdgpu_ras_get_context may return NULL if device not support ras feature, so add check before using. 2024-05-21 5.5 CVE-2023-52814
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/vkms: fix a possible null pointer dereference In amdgpu_vkms_conn_get_modes(), the return value of drm_cvt_mode() is assigned to mode, which will lead to a NULL pointer dereference on failure of drm_cvt_mode(). Add a check to avoid null pointer dereference. 2024-05-21 5.5 CVE-2023-52815
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix a null pointer access when the smc_rreg pointer is NULL In certain types of chips, such as VEGA20, reading the amdgpu_regs_smc file could result in an abnormal null pointer access when the smc_rreg pointer is NULL. Below are the steps to reproduce this issue and the corresponding exception log: 1. Navigate to the directory: /sys/kernel/debug/dri/0 2. Execute command: cat amdgpu_regs_smc 3. Exception Log:: [4005007.702554] BUG: kernel NULL pointer dereference, address: 0000000000000000 [4005007.702562] #PF: supervisor instruction fetch in kernel mode [4005007.702567] #PF: error_code(0x0010) – not-present page [4005007.702570] PGD 0 P4D 0 [4005007.702576] Oops: 0010 [#1] SMP NOPTI [4005007.702581] CPU: 4 PID: 62563 Comm: cat Tainted: G OE 5.15.0-43-generic #46-Ubunt u [4005007.702590] RIP: 0010:0x0 [4005007.702598] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6. [4005007.702600] RSP: 0018:ffffa82b46d27da0 EFLAGS: 00010206 [4005007.702605] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffa82b46d27e68 [4005007.702609] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9940656e0000 [4005007.702612] RBP: ffffa82b46d27dd8 R08: 0000000000000000 R09: ffff994060c07980 [4005007.702615] R10: 0000000000020000 R11: 0000000000000000 R12: 00007f5e06753000 [4005007.702618] R13: ffff9940656e0000 R14: ffffa82b46d27e68 R15: 00007f5e06753000 [4005007.702622] FS: 00007f5e0755b740(0000) GS:ffff99479d300000(0000) knlGS:0000000000000000 [4005007.702626] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [4005007.702629] CR2: ffffffffffffffd6 CR3: 00000003253fc000 CR4: 00000000003506e0 [4005007.702633] Call Trace: [4005007.702636] <TASK> [4005007.702640] amdgpu_debugfs_regs_smc_read+0xb0/0x120 [amdgpu] [4005007.703002] full_proxy_read+0x5c/0x80 [4005007.703011] vfs_read+0x9f/0x1a0 [4005007.703019] ksys_read+0x67/0xe0 [4005007.703023] __x64_sys_read+0x19/0x20 [4005007.703028] do_syscall_64+0x5c/0xc0 [4005007.703034] ? do_user_addr_fault+0x1e3/0x670 [4005007.703040] ? exit_to_user_mode_prepare+0x37/0xb0 [4005007.703047] ? irqentry_exit_to_user_mode+0x9/0x20 [4005007.703052] ? irqentry_exit+0x19/0x30 [4005007.703057] ? exc_page_fault+0x89/0x160 [4005007.703062] ? asm_exc_page_fault+0x8/0x30 [4005007.703068] entry_SYSCALL_64_after_hwframe+0x44/0xae [4005007.703075] RIP: 0033:0x7f5e07672992 [4005007.703079] Code: c0 e9 b2 fe ff ff 50 48 8d 3d fa b2 0c 00 e8 c5 1d 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 e c 28 48 89 54 24 [4005007.703083] RSP: 002b:00007ffe03097898 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 [4005007.703088] RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f5e07672992 [4005007.703091] RDX: 0000000000020000 RSI: 00007f5e06753000 RDI: 0000000000000003 [4005007.703094] RBP: 00007f5e06753000 R08: 00007f5e06752010 R09: 00007f5e06752010 [4005007.703096] R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000022000 [4005007.703099] R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000 [4005007.703105] </TASK> [4005007.703107] Modules linked in: nf_tables libcrc32c nfnetlink algif_hash af_alg binfmt_misc nls_ iso8859_1 ipmi_ssif ast intel_rapl_msr intel_rapl_common drm_vram_helper drm_ttm_helper amd64_edac t tm edac_mce_amd kvm_amd ccp mac_hid k10temp kvm acpi_ipmi ipmi_si rapl sch_fq_codel ipmi_devintf ipm i_msghandler msr parport_pc ppdev lp parport mtd pstore_blk efi_pstore ramoops pstore_zone reed_solo mon ip_tables x_tables autofs4 ib_uverbs ib_core amdgpu(OE) amddrm_ttm_helper(OE) amdttm(OE) iommu_v 2 amd_sched(OE) amdkcl(OE) drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops cec rc_core drm igb ahci xhci_pci libahci i2c_piix4 i2c_algo_bit xhci_pci_renesas dca [4005007.703184] CR2: 0000000000000000 [4005007.703188] —[ en —truncated— 2024-05-21 5.5 CVE-2023-52817
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: drm/panel: fix a possible null pointer dereference In versatile_panel_get_modes(), the return value of drm_mode_duplicate() is assigned to mode, which will lead to a NULL pointer dereference on failure of drm_mode_duplicate(). Add a check to avoid npd. 2024-05-21 5.5 CVE-2023-52821
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix possible memory leak in bnxt_rdma_aux_device_init() If ulp = kzalloc() fails, the allocated edev will leak because it is not properly assigned and the cleanup path will not be able to free it. Fix it by assigning it properly immediately after allocation. 2024-05-20 5.5 CVE-2024-35972
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix memory leak in hci_req_sync_complete() In ‘hci_req_sync_complete()’, always free the previous sync request state before assigning reference to a new one. 2024-05-20 5.5 CVE-2024-35978
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: batman-adv: Avoid infinite loop trying to resize local TT If the MTU of one of an attached interface becomes too small to transmit the local translation table then it must be resized to fit inside all fragments (when enabled) or a single packet. But if the MTU becomes too low to transmit even the header + the VLAN specific part then the resizing of the local TT will never succeed. This can for example happen when the usable space is 110 bytes and 11 VLANs are on top of batman-adv. In this case, at least 116 byte would be needed. There will just be an endless spam of batman_adv: batadv0: Forced to purge local tt entries to fit new maximum fragment MTU (110) in the log but the function will never finish. Problem here is that the timeout will be halved all the time and will then stagnate at 0 and therefore never be able to reduce the table even more. There are other scenarios possible with a similar result. The number of BATADV_TT_CLIENT_NOPURGE entries in the local TT can for example be too high to fit inside a packet. Such a scenario can therefore happen also with only a single VLAN + 7 non-purgable addresses – requiring at least 120 bytes. While this should be handled proactively when: * interface with too low MTU is added * VLAN is added * non-purgeable local mac is added * MTU of an attached interface is reduced * fragmentation setting gets disabled (which most likely requires dropping attached interfaces) not all of these scenarios can be prevented because batman-adv is only consuming events without the the possibility to prevent these actions (non-purgable MAC address added, MTU of an attached interface is reduced). It is therefore necessary to also make sure that the code is able to handle also the situations when there were already incompatible system configuration are present. 2024-05-20 5.5 CVE-2024-35982
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: i2c: smbus: fix NULL function pointer dereference Baruch reported an OOPS when using the designware controller as target only. Target-only modes break the assumption of one transfer function always being available. Fix this by always checking the pointer in __i2c_transfer. [wsa: dropped the simplification in core-smbus to avoid theoretical regressions] 2024-05-20 5.5 CVE-2024-35984
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: dma: xilinx_dpdma: Fix locking There are several places where either chan->lock or chan->vchan.lock was not held. Add appropriate locking. This fixes lockdep warnings like [ 31.077578] ————[ cut here ]———— [ 31.077831] WARNING: CPU: 2 PID: 40 at drivers/dma/xilinx/xilinx_dpdma.c:834 xilinx_dpdma_chan_queue_transfer+0x274/0x5e0 [ 31.077953] Modules linked in: [ 31.078019] CPU: 2 PID: 40 Comm: kworker/u12:1 Not tainted 6.6.20+ #98 [ 31.078102] Hardware name: xlnx,zynqmp (DT) [ 31.078169] Workqueue: events_unbound deferred_probe_work_func [ 31.078272] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=–) [ 31.078377] pc : xilinx_dpdma_chan_queue_transfer+0x274/0x5e0 [ 31.078473] lr : xilinx_dpdma_chan_queue_transfer+0x270/0x5e0 [ 31.078550] sp : ffffffc083bb2e10 [ 31.078590] x29: ffffffc083bb2e10 x28: 0000000000000000 x27: ffffff880165a168 [ 31.078754] x26: ffffff880164e920 x25: ffffff880164eab8 x24: ffffff880164d480 [ 31.078920] x23: ffffff880165a148 x22: ffffff880164e988 x21: 0000000000000000 [ 31.079132] x20: ffffffc082aa3000 x19: ffffff880164e880 x18: 0000000000000000 [ 31.079295] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 [ 31.079453] x14: 0000000000000000 x13: ffffff8802263dc0 x12: 0000000000000001 [ 31.079613] x11: 0001ffc083bb2e34 x10: 0001ff880164e98f x9 : 0001ffc082aa3def [ 31.079824] x8 : 0001ffc082aa3dec x7 : 0000000000000000 x6 : 0000000000000516 [ 31.079982] x5 : ffffffc7f8d43000 x4 : ffffff88003c9c40 x3 : ffffffffffffffff [ 31.080147] x2 : ffffffc7f8d43000 x1 : 00000000000000c0 x0 : 0000000000000000 [ 31.080307] Call trace: [ 31.080340] xilinx_dpdma_chan_queue_transfer+0x274/0x5e0 [ 31.080518] xilinx_dpdma_issue_pending+0x11c/0x120 [ 31.080595] zynqmp_disp_layer_update+0x180/0x3ac [ 31.080712] zynqmp_dpsub_plane_atomic_update+0x11c/0x21c [ 31.080825] drm_atomic_helper_commit_planes+0x20c/0x684 [ 31.080951] drm_atomic_helper_commit_tail+0x5c/0xb0 [ 31.081139] commit_tail+0x234/0x294 [ 31.081246] drm_atomic_helper_commit+0x1f8/0x210 [ 31.081363] drm_atomic_commit+0x100/0x140 [ 31.081477] drm_client_modeset_commit_atomic+0x318/0x384 [ 31.081634] drm_client_modeset_commit_locked+0x8c/0x24c [ 31.081725] drm_client_modeset_commit+0x34/0x5c [ 31.081812] __drm_fb_helper_restore_fbdev_mode_unlocked+0x104/0x168 [ 31.081899] drm_fb_helper_set_par+0x50/0x70 [ 31.081971] fbcon_init+0x538/0xc48 [ 31.082047] visual_init+0x16c/0x23c [ 31.082207] do_bind_con_driver.isra.0+0x2d0/0x634 [ 31.082320] do_take_over_console+0x24c/0x33c [ 31.082429] do_fbcon_takeover+0xbc/0x1b0 [ 31.082503] fbcon_fb_registered+0x2d0/0x34c [ 31.082663] register_framebuffer+0x27c/0x38c [ 31.082767] __drm_fb_helper_initial_config_and_unlock+0x5c0/0x91c [ 31.082939] drm_fb_helper_initial_config+0x50/0x74 [ 31.083012] drm_fbdev_dma_client_hotplug+0xb8/0x108 [ 31.083115] drm_client_register+0xa0/0xf4 [ 31.083195] drm_fbdev_dma_setup+0xb0/0x1cc [ 31.083293] zynqmp_dpsub_drm_init+0x45c/0x4e0 [ 31.083431] zynqmp_dpsub_probe+0x444/0x5e0 [ 31.083616] platform_probe+0x8c/0x13c [ 31.083713] really_probe+0x258/0x59c [ 31.083793] __driver_probe_device+0xc4/0x224 [ 31.083878] driver_probe_device+0x70/0x1c0 [ 31.083961] __device_attach_driver+0x108/0x1e0 [ 31.084052] bus_for_each_drv+0x9c/0x100 [ 31.084125] __device_attach+0x100/0x298 [ 31.084207] device_initial_probe+0x14/0x20 [ 31.084292] bus_probe_device+0xd8/0xdc [ 31.084368] deferred_probe_work_func+0x11c/0x180 [ 31.084451] process_one_work+0x3ac/0x988 [ 31.084643] worker_thread+0x398/0x694 [ 31.084752] kthread+0x1bc/0x1c0 [ 31.084848] ret_from_fork+0x10/0x20 [ 31.084932] irq event stamp: 64549 [ 31.084970] hardirqs last enabled at (64548): [<ffffffc081adf35c>] _raw_spin_unlock_irqrestore+0x80/0x90 [ 31.085157] —truncated— 2024-05-20 5.5 CVE-2024-35990
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: phy: marvell: a3700-comphy: Fix out of bounds read There is an out of bounds read access of ‘gbe_phy_init_fix[fix_idx].addr’ every iteration after ‘fix_idx’ reaches ‘ARRAY_SIZE(gbe_phy_init_fix)’. Make sure ‘gbe_phy_init[addr]’ is used when all elements of ‘gbe_phy_init_fix’ array are handled. Found by Linux Verification Center (linuxtesting.org) with SVACE. 2024-05-20 5.5 CVE-2024-35992
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: HID: i2c-hid: remove I2C_HID_READ_PENDING flag to prevent lock-up The flag I2C_HID_READ_PENDING is used to serialize I2C operations. However, this is not necessary, because I2C core already has its own locking for that. More importantly, this flag can cause a lock-up: if the flag is set in i2c_hid_xfer() and an interrupt happens, the interrupt handler (i2c_hid_irq) will check this flag and return immediately without doing anything, then the interrupt handler will be invoked again in an infinite loop. Since interrupt handler is an RT task, it takes over the CPU and the flag-clearing task never gets scheduled, thus we have a lock-up. Delete this unnecessary flag. 2024-05-20 5.5 CVE-2024-35997
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
linux — linux_kernel
 
In the Linux kernel, the following vulnerability has been resolved: ipv4: check for NULL idev in ip_route_use_hint() syzbot was able to trigger a NULL deref in fib_validate_source() in an old tree [1]. It appears the bug exists in latest trees. All calls to __in_dev_get_rcu() must be checked for a NULL result. [1] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 2 PID: 3257 Comm: syz-executor.3 Not tainted 5.10.0-syzkaller #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:fib_validate_source+0xbf/0x15a0 net/ipv4/fib_frontend.c:425 Code: 18 f2 f2 f2 f2 42 c7 44 20 23 f3 f3 f3 f3 48 89 44 24 78 42 c6 44 20 27 f3 e8 5d 88 48 fc 4c 89 e8 48 c1 e8 03 48 89 44 24 18 <42> 80 3c 20 00 74 08 4c 89 ef e8 d2 15 98 fc 48 89 5c 24 10 41 bf RSP: 0018:ffffc900015fee40 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88800f7a4000 RCX: ffff88800f4f90c0 RDX: 0000000000000000 RSI: 0000000004001eac RDI: ffff8880160c64c0 RBP: ffffc900015ff060 R08: 0000000000000000 R09: ffff88800f7a4000 R10: 0000000000000002 R11: ffff88800f4f90c0 R12: dffffc0000000000 R13: 0000000000000000 R14: 0000000000000000 R15: ffff88800f7a4000 FS: 00007f938acfe6c0(0000) GS:ffff888058c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f938acddd58 CR3: 000000001248e000 CR4: 0000000000352ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ip_route_use_hint+0x410/0x9b0 net/ipv4/route.c:2231 ip_rcv_finish_core+0x2c4/0x1a30 net/ipv4/ip_input.c:327 ip_list_rcv_finish net/ipv4/ip_input.c:612 [inline] ip_sublist_rcv+0x3ed/0xe50 net/ipv4/ip_input.c:638 ip_list_rcv+0x422/0x470 net/ipv4/ip_input.c:673 __netif_receive_skb_list_ptype net/core/dev.c:5572 [inline] __netif_receive_skb_list_core+0x6b1/0x890 net/core/dev.c:5620 __netif_receive_skb_list net/core/dev.c:5672 [inline] netif_receive_skb_list_internal+0x9f9/0xdc0 net/core/dev.c:5764 netif_receive_skb_list+0x55/0x3e0 net/core/dev.c:5816 xdp_recv_frames net/bpf/test_run.c:257 [inline] xdp_test_run_batch net/bpf/test_run.c:335 [inline] bpf_test_run_xdp_live+0x1818/0x1d00 net/bpf/test_run.c:363 bpf_prog_test_run_xdp+0x81f/0x1170 net/bpf/test_run.c:1376 bpf_prog_test_run+0x349/0x3c0 kernel/bpf/syscall.c:3736 __sys_bpf+0x45c/0x710 kernel/bpf/syscall.c:5115 __do_sys_bpf kernel/bpf/syscall.c:5201 [inline] __se_sys_bpf kernel/bpf/syscall.c:5199 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5199 2024-05-20 5.5 CVE-2024-36008
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
mdempfle–Advanced iFrame
 
The Advanced iFrame plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘add_iframe_url_as_param_direct’ parameter in versions up to, and including, 2024.3 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-4365
[email protected]
[email protected]
[email protected]
mohsinrasool–PayPal Pay Now, Buy Now, Donation and Cart Buttons Shortcode
 
The PayPal Pay Now, Buy Now, Donation and Cart Buttons Shortcode plugin for WordPress is vulnerable to Stored Cross-Site Scripting via admin settings in all versions up to, and including, 1.7 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled. 2024-05-23 4.4 CVE-2024-3065
[email protected]
[email protected]
moveaddons–Move Addons for Elementor
 
The Move Addons for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via multiple widgets in all versions up to, and including, 1.3.1 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-4695
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
n/a–VMware vCenter Server
 
The vCenter Server contains a partial file read vulnerability. A malicious actor with administrative privileges on the vCenter appliance shell may exploit this issue to partially read arbitrary files containing sensitive data. 2024-05-21 4.9 CVE-2024-22275
[email protected]
naa986–Videojs HTML5 Player
 
The Videojs HTML5 Player plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s videojs_video shortcode in all versions up to, and including, 1.1.11 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-5205
[email protected]
[email protected]
[email protected]
[email protected]
nextscripts–NextScripts: Social Networks Auto-Poster
 
The NextScripts: Social Networks Auto-Poster plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the HTTP_USER_AGENT header in all versions up to, and including, 4.4.3 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This requires the victim to select view “All Cron Events” in order for the injection to fire. 2024-05-22 6.1 CVE-2024-1762
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
nextscripts–NextScripts: Social Networks Auto-Poster
 
The NextScripts: Social Networks Auto-Poster plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 4.4.3. This is due to missing or incorrect nonce validation on the nxssnap-reposter page. This makes it possible for unauthenticated attackers to delete arbitrary posts or pages via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. 2024-05-22 5.4 CVE-2024-1446
[email protected]
[email protected]
nicdark–ND Shortcodes
 
The ND Shortcodes plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s upload feature in all versions up to, and including, 7.5 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Author-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-25 6.4 CVE-2024-5220
[email protected]
[email protected]
[email protected]
nicheaddons–Primary Addon for Elementor
 
The Primary Addon for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s Pricing Table widget in all versions up to, and including, 1.5.5 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-25 6.4 CVE-2024-5229
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
njba–Ninja Beaver Add-ons for Beaver Builder
 
The Ninja Beaver Add-ons for Beaver Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s widgets in all versions up to, and including, 2.4.5 due to insufficient input sanitization and output escaping on user supplied attributes such as urls. This makes it possible for authenticated attackers with contributor-level and above permissions to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-2163
[email protected]
[email protected]
ome–omero-web
 
OMERO.web provides a web based client and plugin infrastructure. There is currently no escaping or validation of the `callback` parameter that can be passed to various OMERO.web endpoints that have JSONP enabled. This vulnerability has been patched in version 5.26.0. 2024-05-21 6.1 CVE-2024-35180
[email protected]
[email protected]
opajaap–WP Photo Album Plus
 
The WP Photo Album Plus plugin for WordPress is vulnerable to arbitrary shortcode execution in all versions up to, and including, 8.7.02.003. This is due to the plugin allowing unauthenticated users to execute an action that does not properly validate a value before running do_shortcode. This makes it possible for unauthenticated attackers to execute arbitrary shortcodes. 2024-05-24 6.5 CVE-2024-4037
[email protected]
[email protected]
[email protected]
[email protected]
optinmonster–Popup Builder by OptinMonster WordPress Popups for Optins, Email Newsletters and Lead Generation
 
The Popup Builder by OptinMonster – WordPress Popups for Optins, Email Newsletters and Lead Generation plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘campaign_id’ parameter in versions up to, and including, 2.16.1 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-25 6.4 CVE-2024-4045
[email protected]
[email protected]
[email protected]
pickplugins–Post Grid, Form Maker, Popup Maker, WooCommerce Blocks, Post Blocks, Post Carousel Combo Blocks
 
The Post Grid, Form Maker, Popup Maker, WooCommerce Blocks, Post Blocks, Post Carousel – Combo Blocks plugin for WordPress is vulnerable to Stored Cross-Site Scripting via several parameters in all versions up to, and including, 2.2.80 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-3155
[email protected]
[email protected]
posimyththemes–The Plus Addons for Elementor Elementor Addons, Page Templates, Widgets, Mega Menu, WooCommerce
 
The The Plus Addons for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the Hover Card widget in all versions up to, and including, 5.5.4 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-2784
[email protected]
[email protected]
posimyththemes–The Plus Addons for Elementor Elementor Addons, Page Templates, Widgets, Mega Menu, WooCommerce
 
The The Plus Addons for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via several of the plugin’s widgets all versions up to, and including, 5.5.4 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-3718
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
posimyththemes–The Plus Addons for Elementor Elementor Addons, Page Templates, Widgets, Mega Menu, WooCommerce
 
The The Plus Addons for Elementor – Elementor Addons, Page Templates, Widgets, Mega Menu, WooCommerce plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘xai_username’ parameter in versions up to, and including, 5.5.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-4484
[email protected]
[email protected]
[email protected]
posimyththemes–The Plus Addons for Elementor Elementor Addons, Page Templates, Widgets, Mega Menu, WooCommerce
 
The The Plus Addons for Elementor – Elementor Addons, Page Templates, Widgets, Mega Menu, WooCommerce plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘button_custom_attributes’ parameter in versions up to, and including, 5.5.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-4485
[email protected]
[email protected]
[email protected]
psf–requests
 
Requests is a HTTP library. Prior to 2.32.0, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. This vulnerability is fixed in 2.32.0. 2024-05-20 5.6 CVE-2024-35195
[email protected]
[email protected]
[email protected]
quantumcloud–AI ChatBot for WordPress WPBot
 
The AI ChatBot plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the openai_file_list_callback function in all versions up to, and including, 5.3.4. This makes it possible for authenticated attackers, with subscriber-level access and above, to list files existing in a linked OpenAI account. 2024-05-22 5 CVE-2024-0451
[email protected]
[email protected]
[email protected]
quantumcloud–AI ChatBot for WordPress WPBot
 
The AI ChatBot plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the openai_file_upload_callback function in all versions up to, and including, 5.3.4. This makes it possible for authenticated attackers, with subscriber-level access and above, to upload files to a linked OpenAI account. 2024-05-22 5 CVE-2024-0452
[email protected]
[email protected]
[email protected]
quantumcloud–AI ChatBot for WordPress WPBot
 
The AI ChatBot plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the openai_file_delete_callback function in all versions up to, and including, 5.3.4. This makes it possible for authenticated attackers, with subscriber-level access and above, to delete files from a linked OpenAI account. 2024-05-22 5 CVE-2024-0453
[email protected]
[email protected]
[email protected]
rafiul17–Awesome Contact Form7 for Elementor
 
The Awesome Contact Form7 for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘AEP Contact Form 7’ widget in all versions up to, and including, 2.9 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-4486
[email protected]
[email protected]
rainbowgeek–SEOPress On-site SEO
 
The SEOPress – On-site SEO plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the SEO title and description parameters as well as others in all versions up to, and including, 7.5.2.1 due to insufficient input sanitization and output escaping. This makes it possible for attackers, with contributor access or higher, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-1134
[email protected]
[email protected]
rico-macchi–WP Scraper
 
The WP Scraper plugin for WordPress is vulnerable to unauthorized access due to a missing capability check on the wp_scraper_multi_scrape_action() function in all versions up to, and including, 5.7. This makes it possible for authenticated attackers, with subscriber-level access and above, to create arbitrary pages and posts. 2024-05-22 4.3 CVE-2024-3663
[email protected]
[email protected]
rometheme–RomethemeForm For Elementor
 
The RomethemeForm For Elementor plugin for WordPress is vulnerable to unauthorized access and modification of data due to a missing capability check on the export_entries, rtformnewform, and rtformupdate functions in all versions up to, and including, 1.1.5. This makes it possible for unauthenticated attackers to export arbitrary form submissions, create new forms, or update any post title or certain metadata. 2024-05-23 5.3 CVE-2023-6325
[email protected]
[email protected]
[email protected]
sharethis–ShareThis Share Buttons
 
The ShareThis Share Buttons plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘sharethis-inline-button’ shortcode in all versions up to, and including, 2.3.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-3648
[email protected]
[email protected]
spyrosvl–WP Font Awesome Share Icons
 
The WP Font Awesome Share Icons plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘wpfai_social’ shortcode in all versions up to, and including, 1.1.1 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-3198
[email protected]
[email protected]
stacklok–minder
 
Minder is a software supply chain security platform. Prior to version 0.0.50, Minder engine is susceptible to a denial of service from memory exhaustion that can be triggered from maliciously created templates. Minder engine uses templating to generate strings for various use cases such as URLs, messages for pull requests, descriptions for advisories. In some cases can the user control both the template and the params for it, and in a subset of these cases, Minder reads the generated template entirely into memory. When Minders templating meets both of these conditions, an attacker is able to generate large enough templates that Minder will exhaust memory and crash. This vulnerability is fixed in 0.0.50. 2024-05-20 5.3 CVE-2024-35194
[email protected]
[email protected]
tauri-apps–tauri
 
Tauri is a framework for building binaries for all major desktop platforms. Remote origin iFrames in Tauri applications can access the Tauri IPC endpoints without being explicitly allowed in the `dangerousRemoteDomainIpcAccess` in v1 and in the `capabilities` in v2. Valid commands with potentially unwanted consequences (“delete project”, “transfer credits”, etc.) could be invoked by an attacker that controls the content of an iframe running inside a Tauri app. This vulnerability has been patched in versions 1.6.7 and 2.0.0-beta.19. 2024-05-23 5.9 CVE-2024-35222
[email protected]
[email protected]
theluckywp–LuckyWP Table of Contents
 
The LuckyWP Table of Contents plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the attrs parameter in all versions up to, and including, 2.1.4 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link. 2024-05-22 6.1 CVE-2024-2119
[email protected]
[email protected]
theluckywp–LuckyWP Table of Contents
 
The LuckyWP Table of Contents plugin for WordPress is vulnerable to Stored Cross-Site Scripting via multiple parameters in versions up to, and including, 2.1.4 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers with Contributor permissions and above to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 5.5 CVE-2024-2953
[email protected]
[email protected]
[email protected]
[email protected]
theluckywp–LuckyWP Table of Contents
 
The LuckyWP Table of Contents plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘Header Title’ field in all versions up to and including 2.1.4 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level access, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled. 2024-05-22 4.4 CVE-2023-6487
[email protected]
[email protected]
themefusecom–Brizy Page Builder
 
The Brizy – Page Builder plugin for WordPress is vulnerable to unauthorized plugin setting update due to a missing capability check on the functions action_request_disable, action_change_template, and action_request_enable in all versions up to, and including, 2.4.43. This makes it possible for authenticated attackers, with contributor access or above, to enable/disable the Brizy editor and modify the template used. 2024-05-23 4.3 CVE-2024-3711
[email protected]
[email protected]
[email protected]
themehunk–Responsive Contact Form Builder & Lead Generation Plugin
 
The Responsive Contact Form Builder & Lead Generation Plugin plugin for WordPress is vulnerable to arbitrary shortcode execution in all versions up to, and including, 1.9.1. This is due to the software allowing users to execute an action that does not properly validate a value before running do_shortcode. This makes it possible for authenticated attackers, with subscriber-level access and above, to execute arbitrary shortcodes. 2024-05-22 5.4 CVE-2024-4261
[email protected]
[email protected]
themewinter–WPCafe Online Food Ordering, Restaurant Menu, Delivery, and Reservations for WooCommerce
 
The WPCafe – Restaurant Menu, Online Ordering for WooCommerce, Pickup / Delivery and Table Reservation plugin for WordPress is vulnerable to Server-Side Request Forgery in all versions up to, and including, 2.2.23 via the wpc_check_for_submission function. This makes it possible for unauthenticated attackers to make web requests to arbitrary locations originating from the web application. 2024-05-23 5.3 CVE-2024-1855
[email protected]
[email protected]
[email protected]
thimpress–LearnPress WordPress LMS Plugin
 
The LearnPress – WordPress LMS Plugin plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the ‘id’ parameter in all versions up to, and including, 4.2.6.6 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link. 2024-05-22 6.4 CVE-2024-4971
[email protected]
[email protected]
uapp–Testimonial Carousel For Elementor
 
The Testimonial Carousel For Elementor plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the ‘save_testimonials_option_callback’ function in versions up to, and including, 10.2.0. This makes it possible for unauthenticated attackers to update the OpenAI API key, disabling the feature. 2024-05-25 5.3 CVE-2024-4858
[email protected]
[email protected]
[email protected]
umbraco–Umbraco-CMS
 
Umbraco is an ASP.NET CMS used by more than 730.000 websites. Umbraco has an endpoint that is vulnerable to open redirects. The endpoint is protected so it requires the user to be signed into backoffice before the vulnerable is exposed. This vulnerability has been patched in version(s) 8.18.14, 10.8.6, 12.3.10 and 13.3.1. 2024-05-21 6.1 CVE-2024-34071
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
umbraco–Umbraco-CMS
 
Umbraco CMS is an ASP.NET CMS used by more than 730.000 websites. Stored Cross-site scripting (XSS) enable attackers that have access to backoffice to bring malicious content into a website or application. This vulnerability has been patched in version(s) 8.18.13, 10.8.4, 12.3.7, 13.1.1 by implementing IHtmlSanitizer. 2024-05-21 4.2 CVE-2024-35218
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
vberkel–Schema App Structured Data
 
The Schema App Structured Data plugin for WordPress is vulnerable to unauthorized modification of data due to a missing capability check on the MarkupUpdate function in all versions up to, and including, 2.1.0. This makes it possible for authenticated attackers, with subscriber access or higher, to update or delete post metadata. 2024-05-24 4.3 CVE-2024-0893
[email protected]
[email protected]
verbb–formie
 
Formie is a Craft CMS plugin for creating forms. Prior to 2.1.6, users with access to a form’s settings can include malicious Twig code into fields that support Twig. These might be the Submission Title or the Success Message. This code will then be executed upon creating a submission, or rendering the text. This has been fixed in Formie 2.1.6. 2024-05-20 4.4 CVE-2024-35191
[email protected]
[email protected]
webvitaly–iframe
 
The iframe plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s shortcode(s) in all versions up to and including 5.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers with contributor-level and above permissions to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 5 CVE-2023-6844
[email protected]
[email protected]
[email protected]
[email protected]
wpbean–WPB Elementor Addons
 
The WPB Elementor Addons plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘url’ parameter in all versions up to, and including, 1.0.9 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-4896
[email protected]
[email protected]
[email protected]
wpdatatables–wpDataTables WordPress Data Table, Dynamic Tables & Table Charts Plugin
 
The wpDataTables – WordPress Data Table, Dynamic Tables & Table Charts Plugin plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the CSV import functionality in all versions up to, and including, 3.4.2.12 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 4.7 CVE-2024-4895
[email protected]
[email protected]
[email protected]
wpdevteam–EmbedPress Embed PDF, Google Docs, Vimeo, Wistia, Embed YouTube Videos, Audios, Maps & Embed Any Documents in Gutenberg & Elementor
 
The EmbedPress – Embed PDF, Google Docs, Vimeo, Wistia, Embed YouTube Videos, Audios, Maps & Embed Any Documents in Gutenberg & Elementor plugin for WordPress is vulnerable to unauthorized access of functionality due to insufficient authorization validation on the PDF embed block in all versions up to, and including, 3.9.12. This makes it possible for authenticated attackers, with contributor-level access and above, to embed PDF blocks. 2024-05-23 4.3 CVE-2024-1803
[email protected]
[email protected]
wpgmaps–WP Go Maps (formerly WP Google Maps)
 
The WP Go Maps (formerly WP Google Maps) plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s wpgmza shortcode in all versions up to, and including, 9.0.36 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-24 6.4 CVE-2024-3557
[email protected]
[email protected]
[email protected]
wpkoithemes–WPKoi Templates for Elementor
 
The WPKoi Templates for Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via ‘id’, ‘mixColor’, ‘backgroundColor’, ‘saveInCookies’, and ‘autoMatchOsTheme’ parameters in all versions up to, and including, 2.5.9 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-4980
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
wpmet–ElementsKit Pro
 
The ElementsKit Pro plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘url’ parameter in versions up to, and including, 3.6.1 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-21 6.4 CVE-2024-4452
[email protected]
[email protected]
wpo365–WordPress + Microsoft Office 365 / Azure AD | LOGIN
 
The WordPress + Microsoft Office 365 / Azure AD | LOGIN plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin’s ‘pintra’ shortcode in all versions up to, and including, 27.2 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-23 6.4 CVE-2024-4706
[email protected]
[email protected]
wpopal–Opal Estate Pro Property Management and Submission
 
The Opal Estate Pro – Property Management and Submission plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the agent latitude and longitude parameters in all versions up to, and including, 1.7.6 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. 2024-05-22 6.4 CVE-2024-3666
[email protected]
[email protected]
wptb–WP Table Builder WordPress Table Plugin
 
The WP Table Builder – WordPress Table Plugin plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the button element in all versions up to, and including, 1.4.14 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. By default, this can only be exploited by administrators, but the ability to use and configure WP Table Builder can be extended to contributors. 2024-05-21 6.4 CVE-2024-4700
[email protected]
[email protected]
[email protected]
[email protected]

Back to top

Low Vulnerabilities

Primary
Vendor — Product
Description Published CVSS Score Source & Patch Info
PHPGurukul–Directory Management System
 
A vulnerability classified as problematic has been found in PHPGurukul Directory Management System 1.0. Affected is an unknown function of the file /admin/search-directory.php.. The manipulation leads to cross site scripting. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-265212. 2024-05-20 2.4 CVE-2024-5136
[email protected]
[email protected]
[email protected]
[email protected]
PHPGurukul–Directory Management System
 
A vulnerability classified as problematic was found in PHPGurukul Directory Management System 1.0. Affected by this vulnerability is an unknown functionality of the file /admin/admin-profile.php of the component Searchbar. The manipulation leads to cross site scripting. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-265213 was assigned to this vulnerability. 2024-05-20 2.4 CVE-2024-5137
[email protected]
[email protected]
[email protected]
[email protected]
Qiwen–Netdisk
 
A vulnerability was found in Qiwen Netdisk up to 1.4.0. It has been declared as problematic. Affected by this vulnerability is an unknown functionality of the component File Rename Handler. The manipulation with the input <img src=”” onerror=”alert(document.cookie)”> leads to cross site scripting. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-266083. 2024-05-23 3.5 CVE-2024-5279
[email protected]
[email protected]
[email protected]
SourceCodester–Event Registration System
 
A vulnerability was found in SourceCodester Event Registration System 1.0. It has been declared as problematic. Affected by this vulnerability is an unknown functionality of the file /registrar/?page=registration. The manipulation of the argument e leads to cross site scripting. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-265201 was assigned to this vulnerability. 2024-05-20 3.5 CVE-2024-5121
[email protected]
[email protected]
[email protected]
[email protected]
huandu–facebook
 
github.com/huandu/facebook is a Go package that fully supports the Facebook Graph API with file upload, batch request and marketing API. access_token can be exposed in error message on fail in HTTP request. This issue has been patched in version 2.7.2. 2024-05-24 3.7 CVE-2024-35232
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]
n/a–FastCMS
 
A vulnerability was found in FastCMS up to 0.1.5 and classified as problematic. Affected by this issue is some unknown functionality of the component New Article Tab. The manipulation of the argument Title leads to cross site scripting. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. VDB-266126 is the identifier assigned to this vulnerability. 2024-05-24 2.4 CVE-2023-1111
[email protected]
[email protected]
[email protected]
n/a–JFinalCMS
 
A vulnerability classified as problematic has been found in JFinalCMS up to 20221020. This affects an unknown part of the file /admin/content. The manipulation of the argument Title leads to cross site scripting. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-266121 was assigned to this vulnerability. 2024-05-24 2.4 CVE-2024-5310
[email protected]
[email protected]
[email protected]
vantage6–vantage6
 
vantage6 is an open-source infrastructure for privacy preserving analysis. Collaboration administrators can add extra organizations to their collaboration that can extend their influence. For example, organizations that they include can then create new users for which they know the passwords, and use that to read task results of other collaborations that that organization is involved in. This is only relatively trusted users – with access to manage a collaboration – are able to do this, which reduces the impact. This vulnerability was patched in version 4.5.0rc3. 2024-05-23 2.7 CVE-2024-32969
[email protected]
[email protected]
xuliangzhan–vxe-table
 
A vulnerability, which was classified as problematic, has been found in xuliangzhan vxe-table up to 3.7.9. This issue affects the function export of the file packages/textarea/src/textarea.js of the component vxe-textarea. The manipulation of the argument inputValue leads to cross site scripting. The attack may be initiated remotely. Upgrading to version 3.7.10 is able to address this issue. The patch is named d70b0e089740b65a22c89c106ebc4627ac48a22d. It is recommended to upgrade the affected component. The associated identifier of this vulnerability is VDB-266123. 2024-05-24 3.5 CVE-2023-1001
[email protected]
[email protected]
[email protected]
[email protected]
[email protected]

Back to top

Severity Not Yet Assigned

Primary
Vendor — Product
Description Published CVSS Score Source & Patch Info
Atlassian–Confluence Data Center
 
This High severity RCE (Remote Code Execution) vulnerability was introduced in version 5.2 of Confluence Data Center and Server. This RCE (Remote Code Execution) vulnerability, with a CVSS Score of 8.3, allows an authenticated attacker to execute arbitrary code which has high impact to confidentiality, high impact to integrity, high impact to availability, and requires no user interaction.  Atlassian recommends that Confluence Data Center and Server customers upgrade to latest version. If you are unable to do so, upgrade your instance to one of the specified supported fixed versions. See the release notes https://confluence.atlassian.com/doc/confluence-release-notes-327.html You can download the latest version of Confluence Data Center and Server from the download center https://www.atlassian.com/software/confluence/download-archives. This vulnerability was found internally. 2024-05-21 not yet calculated CVE-2024-21683
[email protected]
[email protected]
Avira–Prime
 
Avira Prime Link Following Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of Avira Prime. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. The specific flaw exists within the Avira Spotlight Service. By creating a symbolic link, an attacker can abuse the service to delete a file. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-21600. 2024-05-22 not yet calculated CVE-2023-51636
[email protected]
D-Link–D-View
 
D-Link D-View Use of Hard-coded Cryptographic Key Authentication Bypass Vulnerability. This vulnerability allows remote attackers to bypass authentication on affected installations of D-Link D-View. Authentication is not required to exploit this vulnerability. The specific flaw exists within the TokenUtils class. The issue results from a hard-coded cryptographic key. An attacker can leverage this vulnerability to bypass authentication on the system. Was ZDI-CAN-21991. 2024-05-23 not yet calculated CVE-2024-5296
[email protected]
D-Link–D-View
 
D-Link D-View executeWmicCmd Command Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of D-Link D-View. Although authentication is required to exploit this vulnerability, the existing authentication mechanism can be bypassed. The specific flaw exists within the executeWmicCmd method. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-21821. 2024-05-23 not yet calculated CVE-2024-5297
[email protected]
D-Link–D-View
 
D-Link D-View queryDeviceCustomMonitorResult Exposed Dangerous Method Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of D-Link D-View. Although authentication is required to exploit this vulnerability, the existing authentication mechanism can be bypassed. The specific flaw exists within the queryDeviceCustomMonitorResult method. The issue results from an exposed dangerous method. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-21842. 2024-05-23 not yet calculated CVE-2024-5298
[email protected]
D-Link–D-View
 
D-Link D-View execMonitorScript Exposed Dangerous Method Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of D-Link D-View. Although authentication is required to exploit this vulnerability, the existing authentication mechanism can be bypassed. The specific flaw exists within the execMonitorScript method. The issue results from an exposed dangerous method. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-21828. 2024-05-23 not yet calculated CVE-2024-5299
[email protected]
D-Link–DIR-2150
 
D-Link DIR-2150 GetDeviceSettings Target Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DIR-2150 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the SOAP API interface, which listens on TCP port 80 by default. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-21235. 2024-05-23 not yet calculated CVE-2024-5291
[email protected]
D-Link–DIR-2640
 
D-Link DIR-2640 HTTP Referer Stack-Based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link DIR-2640-US routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within prog.cgi, which handles HNAP requests made to the lighttpd webserver listening on TCP ports 80 and 443. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-21853. 2024-05-23 not yet calculated CVE-2024-5293
[email protected]
D-Link–DIR-3040
 
D-Link DIR-3040 prog.cgi websSecurityHandler Memory Leak Denial-of-Service Vulnerability. This vulnerability allows network-adjacent attackers to create a denial-of-service condition on affected installations of D-Link DIR-3040 routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the prog.cgi program, which handles HNAP requests made to the lighttpd webserver listening on ports 80 and 443. The issue results from the lack of proper memory management when processing HTTP cookie values. An attacker can leverage this vulnerability to create a denial-of-service condition on the system. . Was ZDI-CAN-21668. 2024-05-23 not yet calculated CVE-2024-5294
[email protected]
D-Link–G416
 
D-Link G416 flupl self Command Injection Remote Code Execution Vulnerability. This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of D-Link G416 wireless routers. Authentication is not required to exploit this vulnerability. The specific flaw exists within the HTTP service listening on TCP port 80. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-21294. 2024-05-23 not yet calculated CVE-2024-5295
[email protected]
D-Link–Network Assistant
 
D-Link Network Assistant Uncontrolled Search Path Element Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of D-Link Network Assistant. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. The specific flaw exists within the DNACore service. The service loads a file from an unsecured location. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-21426. 2024-05-23 not yet calculated CVE-2024-5292
[email protected]
GStreamer–GStreamer
 
GStreamer EXIF Metadata Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GStreamer. Interaction with this library is required to exploit this vulnerability but attack vectors may vary depending on the implementation. The specific flaw exists within the parsing of EXIF metadata. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. . Was ZDI-CAN-23896. 2024-05-22 not yet calculated CVE-2024-4453
[email protected]
[email protected]
GitHub–Enterprise Server
 
An authentication bypass vulnerability was present in the GitHub Enterprise Server (GHES) when utilizing SAML single sign-on authentication with the optional encrypted assertions feature. This vulnerability allowed an attacker to forge a SAML response to provision and/or gain access to a user with site administrator privileges. Exploitation of this vulnerability would allow unauthorized access to the instance without requiring prior authentication. This vulnerability affected all versions of GitHub Enterprise Server prior to 3.13.0 and was fixed in versions 3.9.15, 3.10.12, 3.11.10 and 3.12.4. This vulnerability was reported via the GitHub Bug Bounty program. 2024-05-20 not yet calculated CVE-2024-4985
[email protected]
[email protected]
[email protected]
[email protected]
Google–Chrome
 
Use after free in Scheduling in Google Chrome prior to 125.0.6422.76 allowed a remote attacker to execute arbitrary code inside a sandbox via a crafted HTML page. (Chromium security severity: High) 2024-05-22 not yet calculated CVE-2024-5157
[email protected]
[email protected]
Google–Chrome
 
Type Confusion in V8 in Google Chrome prior to 125.0.6422.76 allowed a remote attacker to potentially perform arbitrary read/write via a crafted HTML page. (Chromium security severity: High) 2024-05-22 not yet calculated CVE-2024-5158
[email protected]
[email protected]
Google–Chrome
 
Heap buffer overflow in ANGLE in Google Chrome prior to 125.0.6422.76 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. (Chromium security severity: High) 2024-05-22 not yet calculated CVE-2024-5159
[email protected]
[email protected]
Google–Chrome
 
Heap buffer overflow in Dawn in Google Chrome prior to 125.0.6422.76 allowed a remote attacker to perform an out of bounds memory write via a crafted HTML page. (Chromium security severity: High) 2024-05-22 not yet calculated CVE-2024-5160
[email protected]
[email protected]
Google–Tink
 
There exists a Denial of service vulnerability in Tink-cc in versions prior to 2.1.3.  * An adversary can crash binaries using the crypto::tink::JsonKeysetReader in tink-cc by providing an input that is not an encoded JSON object, but still a valid encoded JSON element, for example a number or an array. This will crash as Tink just assumes any valid JSON input will contain an object. * An adversary can crash binaries using the crypto::tink::JsonKeysetReader in tink-cc by providing an input containing many nested JSON objects. This may result in a stack overflow. We recommend upgrading to version 2.1.3 or above 2024-05-21 not yet calculated CVE-2024-4420
[email protected]
HP Inc.–Certain HP LaserJet Pro Devices
 
Certain HP LaserJet Pro devices are potentially vulnerable to a Cross-Site Scripting (XSS) attack via the web management interface of the device. 2024-05-23 not yet calculated CVE-2024-2301
[email protected]
HP Inc.–Certain HP LaserJet Pro Printers 
 
A user with device administrative privileges can change existing SMTP server settings on the device, without having to re-enter SMTP server credentials. By redirecting send-to-email traffic to the new server, the original SMTP server credentials may potentially be exposed. 2024-05-23 not yet calculated CVE-2024-5143
[email protected]
HYPR–Passwordless
 
Improper Verification of Cryptographic Signature vulnerability in HYPR Passwordless on Windows allows Malicious Software Update.This issue affects HYPR Passwordless: before 9.1. 2024-05-21 not yet calculated CVE-2024-1721
[email protected]
Ivanti–EPMM
 
An SQL Injection vulnerability in a web component of EPMM versions before 12.1.0.0 allows an authenticated user with appropriate privilege to access or modify data in the underlying database. 2024-05-22 not yet calculated CVE-2023-46806
[email protected]
Ivanti–EPMM
 
An SQL Injection vulnerability in web component of EPMM before 12.1.0.0 allows an authenticated user with appropriate privilege to access or modify data in the underlying database. 2024-05-22 not yet calculated CVE-2023-46807
[email protected]
Jenkins Project–Jenkins Report Info Plugin
 
Jenkins Report Info Plugin 1.2 and earlier does not perform path validation of the workspace directory while serving report files, allowing attackers with Item/Configure permission to retrieve Surefire failures, PMD violations, Findbugs bugs, and Checkstyle errors on the controller file system by editing the workspace path. 2024-05-24 not yet calculated CVE-2024-5273
[email protected]
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: avoid a use-after-free when BO init fails nouveau_bo_init() is backed by ttm_bo_init() and ferries its return code back to the caller. On failures, ttm_bo_init() invokes the provided destructor which should de-initialize and free the memory. Thus, when nouveau_bo_init() returns an error the gem object has already been released and the memory freed by nouveau_bo_del_ttm(). 2024-05-21 not yet calculated CVE-2020-36788
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: core: fix kernel panic when do reboot When do system reboot, it calls dwc3_shutdown and the whole debugfs for dwc3 has removed first, when the gadget tries to do deinit, and remove debugfs for its endpoints, it meets NULL pointer dereference issue when call debugfs_lookup. Fix it by removing the whole dwc3 debugfs later than dwc3_drd_exit. [ 2924.958838] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000002 …. [ 2925.030994] pstate: 60000005 (nZCv daif -PAN -UAO -TCO BTYPE=–) [ 2925.037005] pc : inode_permission+0x2c/0x198 [ 2925.041281] lr : lookup_one_len_common+0xb0/0xf8 [ 2925.045903] sp : ffff80001276ba70 [ 2925.049218] x29: ffff80001276ba70 x28: ffff0000c01f0000 x27: 0000000000000000 [ 2925.056364] x26: ffff800011791e70 x25: 0000000000000008 x24: dead000000000100 [ 2925.063510] x23: dead000000000122 x22: 0000000000000000 x21: 0000000000000001 [ 2925.070652] x20: ffff8000122c6188 x19: 0000000000000000 x18: 0000000000000000 [ 2925.077797] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000004 [ 2925.084943] x14: ffffffffffffffff x13: 0000000000000000 x12: 0000000000000030 [ 2925.092087] x11: 0101010101010101 x10: 7f7f7f7f7f7f7f7f x9 : ffff8000102b2420 [ 2925.099232] x8 : 7f7f7f7f7f7f7f7f x7 : feff73746e2f6f64 x6 : 0000000000008080 [ 2925.106378] x5 : 61c8864680b583eb x4 : 209e6ec2d263dbb7 x3 : 000074756f307065 [ 2925.113523] x2 : 0000000000000001 x1 : 0000000000000000 x0 : ffff8000122c6188 [ 2925.120671] Call trace: [ 2925.123119] inode_permission+0x2c/0x198 [ 2925.127042] lookup_one_len_common+0xb0/0xf8 [ 2925.131315] lookup_one_len_unlocked+0x34/0xb0 [ 2925.135764] lookup_positive_unlocked+0x14/0x50 [ 2925.140296] debugfs_lookup+0x68/0xa0 [ 2925.143964] dwc3_gadget_free_endpoints+0x84/0xb0 [ 2925.148675] dwc3_gadget_exit+0x28/0x78 [ 2925.152518] dwc3_drd_exit+0x100/0x1f8 [ 2925.156267] dwc3_remove+0x11c/0x120 [ 2925.159851] dwc3_shutdown+0x14/0x20 [ 2925.163432] platform_shutdown+0x28/0x38 [ 2925.167360] device_shutdown+0x15c/0x378 [ 2925.171291] kernel_restart_prepare+0x3c/0x48 [ 2925.175650] kernel_restart+0x1c/0x68 [ 2925.179316] __do_sys_reboot+0x218/0x240 [ 2925.183247] __arm64_sys_reboot+0x28/0x30 [ 2925.187262] invoke_syscall+0x48/0x100 [ 2925.191017] el0_svc_common.constprop.0+0x48/0xc8 [ 2925.195726] do_el0_svc+0x28/0x88 [ 2925.199045] el0_svc+0x20/0x30 [ 2925.202104] el0_sync_handler+0xa8/0xb0 [ 2925.205942] el0_sync+0x148/0x180 [ 2925.209270] Code: a9025bf5 2a0203f5 121f0056 370802b5 (79400660) [ 2925.215372] —[ end trace 124254d8e485a58b ]— [ 2925.220012] Kernel panic – not syncing: Attempted to kill init! exitcode=0x0000000b [ 2925.227676] Kernel Offset: disabled [ 2925.231164] CPU features: 0x00001001,20000846 [ 2925.235521] Memory Limit: none [ 2925.238580] —[ end Kernel panic – not syncing: Attempted to kill init! exitcode=0x0000000b ]— (cherry picked from commit 2a042767814bd0edf2619f06fecd374e266ea068) 2024-05-21 not yet calculated CVE-2021-47220
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mm/slub: actually fix freelist pointer vs redzoning It turns out that SLUB redzoning (“slub_debug=Z”) checks from s->object_size rather than from s->inuse (which is normally bumped to make room for the freelist pointer), so a cache created with an object size less than 24 would have the freelist pointer written beyond s->object_size, causing the redzone to be corrupted by the freelist pointer. This was very visible with “slub_debug=ZF”: BUG test (Tainted: G B ): Right Redzone overwritten —————————————————————————– INFO: 0xffff957ead1c05de-0xffff957ead1c05df @offset=1502. First byte 0x1a instead of 0xbb INFO: Slab 0xffffef3950b47000 objects=170 used=170 fp=0x0000000000000000 flags=0x8000000000000200 INFO: Object 0xffff957ead1c05d8 @offset=1496 fp=0xffff957ead1c0620 Redzone (____ptrval____): bb bb bb bb bb bb bb bb …….. Object (____ptrval____): 00 00 00 00 00 f6 f4 a5 …….. Redzone (____ptrval____): 40 1d e8 1a aa @…. Padding (____ptrval____): 00 00 00 00 00 00 00 00 …….. Adjust the offset to stay within s->object_size. (Note that no caches of in this size range are known to exist in the kernel currently.) 2024-05-21 not yet calculated CVE-2021-47221
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: bridge: fix vlan tunnel dst refcnt when egressing The egress tunnel code uses dst_clone() and directly sets the result which is wrong because the entry might have 0 refcnt or be already deleted, causing number of problems. It also triggers the WARN_ON() in dst_hold()[1] when a refcnt couldn’t be taken. Fix it by using dst_hold_safe() and checking if a reference was actually taken before setting the dst. [1] dmesg WARN_ON log and following refcnt errors WARNING: CPU: 5 PID: 38 at include/net/dst.h:230 br_handle_egress_vlan_tunnel+0x10b/0x134 [bridge] Modules linked in: 8021q garp mrp bridge stp llc bonding ipv6 virtio_net CPU: 5 PID: 38 Comm: ksoftirqd/5 Kdump: loaded Tainted: G W 5.13.0-rc3+ #360 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 RIP: 0010:br_handle_egress_vlan_tunnel+0x10b/0x134 [bridge] Code: e8 85 bc 01 e1 45 84 f6 74 90 45 31 f6 85 db 48 c7 c7 a0 02 19 a0 41 0f 94 c6 31 c9 31 d2 44 89 f6 e8 64 bc 01 e1 85 db 75 02 <0f> 0b 31 c9 31 d2 44 89 f6 48 c7 c7 70 02 19 a0 e8 4b bc 01 e1 49 RSP: 0018:ffff8881003d39e8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffffffffa01902a0 RBP: ffff8881040c6700 R08: 0000000000000000 R09: 0000000000000001 R10: 2ce93d0054fe0d00 R11: 54fe0d00000e0000 R12: ffff888109515000 R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000401 FS: 0000000000000000(0000) GS:ffff88822bf40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f42ba70f030 CR3: 0000000109926000 CR4: 00000000000006e0 Call Trace: br_handle_vlan+0xbc/0xca [bridge] __br_forward+0x23/0x164 [bridge] deliver_clone+0x41/0x48 [bridge] br_handle_frame_finish+0x36f/0x3aa [bridge] ? skb_dst+0x2e/0x38 [bridge] ? br_handle_ingress_vlan_tunnel+0x3e/0x1c8 [bridge] ? br_handle_frame_finish+0x3aa/0x3aa [bridge] br_handle_frame+0x2c3/0x377 [bridge] ? __skb_pull+0x33/0x51 ? vlan_do_receive+0x4f/0x36a ? br_handle_frame_finish+0x3aa/0x3aa [bridge] __netif_receive_skb_core+0x539/0x7c6 ? __list_del_entry_valid+0x16e/0x1c2 __netif_receive_skb_list_core+0x6d/0xd6 netif_receive_skb_list_internal+0x1d9/0x1fa gro_normal_list+0x22/0x3e dev_gro_receive+0x55b/0x600 ? detach_buf_split+0x58/0x140 napi_gro_receive+0x94/0x12e virtnet_poll+0x15d/0x315 [virtio_net] __napi_poll+0x2c/0x1c9 net_rx_action+0xe6/0x1fb __do_softirq+0x115/0x2d8 run_ksoftirqd+0x18/0x20 smpboot_thread_fn+0x183/0x19c ? smpboot_unregister_percpu_thread+0x66/0x66 kthread+0x10a/0x10f ? kthread_mod_delayed_work+0xb6/0xb6 ret_from_fork+0x22/0x30 —[ end trace 49f61b07f775fd2b ]— dst_release: dst:00000000c02d677a refcnt:-1 dst_release underflow 2024-05-21 not yet calculated CVE-2021-47222
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: bridge: fix vlan tunnel dst null pointer dereference This patch fixes a tunnel_dst null pointer dereference due to lockless access in the tunnel egress path. When deleting a vlan tunnel the tunnel_dst pointer is set to NULL without waiting a grace period (i.e. while it’s still usable) and packets egressing are dereferencing it without checking. Use READ/WRITE_ONCE to annotate the lockless use of tunnel_id, use RCU for accessing tunnel_dst and make sure it is read only once and checked in the egress path. The dst is already properly RCU protected so we don’t need to do anything fancy than to make sure tunnel_id and tunnel_dst are read only once and checked in the egress path. 2024-05-21 not yet calculated CVE-2021-47223
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: ll_temac: Make sure to free skb when it is completely used With the skb pointer piggy-backed on the TX BD, we have a simple and efficient way to free the skb buffer when the frame has been transmitted. But in order to avoid freeing the skb while there are still fragments from the skb in use, we need to piggy-back on the TX BD of the skb, not the first. Without this, we are doing use-after-free on the DMA side, when the first BD of a multi TX BD packet is seen as completed in xmit_done, and the remaining BDs are still being processed. 2024-05-21 not yet calculated CVE-2021-47224
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mac80211: fix deadlock in AP/VLAN handling Syzbot reports that when you have AP_VLAN interfaces that are up and close the AP interface they belong to, we get a deadlock. No surprise – since we dev_close() them with the wiphy mutex held, which goes back into the netdev notifier in cfg80211 and tries to acquire the wiphy mutex there. To fix this, we need to do two things: 1) prevent changing iftype while AP_VLANs are up, we can’t easily fix this case since cfg80211 already calls us with the wiphy mutex held, but change_interface() is relatively rare in drivers anyway, so changing iftype isn’t used much (and userspace has to fall back to down/change/up anyway) 2) pull the dev_close() loop over VLANs out of the wiphy mutex section in the normal stop case 2024-05-21 not yet calculated CVE-2021-47225
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer Both Intel and AMD consider it to be architecturally valid for XRSTOR to fail with #PF but nonetheless change the register state. The actual conditions under which this might occur are unclear [1], but it seems plausible that this might be triggered if one sibling thread unmaps a page and invalidates the shared TLB while another sibling thread is executing XRSTOR on the page in question. __fpu__restore_sig() can execute XRSTOR while the hardware registers are preserved on behalf of a different victim task (using the fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but modify the registers. If this happens, then there is a window in which __fpu__restore_sig() could schedule out and the victim task could schedule back in without reloading its own FPU registers. This would result in part of the FPU state that __fpu__restore_sig() was attempting to load leaking into the victim task’s user-visible state. Invalidate preserved FPU registers on XRSTOR failure to prevent this situation from corrupting any state. [1] Frequent readers of the errata lists might imagine “complex microarchitectural conditions”. 2024-05-21 not yet calculated CVE-2021-47226
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Prevent state corruption in __fpu__restore_sig() The non-compacted slowpath uses __copy_from_user() and copies the entire user buffer into the kernel buffer, verbatim. This means that the kernel buffer may now contain entirely invalid state on which XRSTOR will #GP. validate_user_xstate_header() can detect some of that corruption, but that leaves the onus on callers to clear the buffer. Prior to XSAVES support, it was possible just to reinitialize the buffer, completely, but with supervisor states that is not longer possible as the buffer clearing code split got it backwards. Fixing that is possible but not corrupting the state in the first place is more robust. Avoid corruption of the kernel XSAVE buffer by using copy_user_to_xstate() which validates the XSAVE header contents before copying the actual states to the kernel. copy_user_to_xstate() was previously only called for compacted-format kernel buffers, but it works for both compacted and non-compacted forms. Using it for the non-compacted form is slower because of multiple __copy_from_user() operations, but that cost is less important than robust code in an already slow path. [ Changelog polished by Dave Hansen ] 2024-05-21 not yet calculated CVE-2021-47227
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: x86/ioremap: Map EFI-reserved memory as encrypted for SEV Some drivers require memory that is marked as EFI boot services data. In order for this memory to not be re-used by the kernel after ExitBootServices(), efi_mem_reserve() is used to preserve it by inserting a new EFI memory descriptor and marking it with the EFI_MEMORY_RUNTIME attribute. Under SEV, memory marked with the EFI_MEMORY_RUNTIME attribute needs to be mapped encrypted by Linux, otherwise the kernel might crash at boot like below: EFI Variables Facility v0.08 2004-May-17 general protection fault, probably for non-canonical address 0x3597688770a868b2: 0000 [#1] SMP NOPTI CPU: 13 PID: 1 Comm: swapper/0 Not tainted 5.12.4-2-default #1 openSUSE Tumbleweed Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:efi_mokvar_entry_next […] Call Trace: efi_mokvar_sysfs_init ? efi_mokvar_table_init do_one_initcall ? __kmalloc kernel_init_freeable ? rest_init kernel_init ret_from_fork Expand the __ioremap_check_other() function to additionally check for this other type of boot data reserved at runtime and indicate that it should be mapped encrypted for an SEV guest. [ bp: Massage commit message. ] 2024-05-21 not yet calculated CVE-2021-47228
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: PCI: aardvark: Fix kernel panic during PIO transfer Trying to start a new PIO transfer by writing value 0 in PIO_START register when previous transfer has not yet completed (which is indicated by value 1 in PIO_START) causes an External Abort on CPU, which results in kernel panic: SError Interrupt on CPU0, code 0xbf000002 — SError Kernel panic – not syncing: Asynchronous SError Interrupt To prevent kernel panic, it is required to reject a new PIO transfer when previous one has not finished yet. If previous PIO transfer is not finished yet, the kernel may issue a new PIO request only if the previous PIO transfer timed out. In the past the root cause of this issue was incorrectly identified (as it often happens during link retraining or after link down event) and special hack was implemented in Trusted Firmware to catch all SError events in EL3, to ignore errors with code 0xbf000002 and not forwarding any other errors to kernel and instead throw panic from EL3 Trusted Firmware handler. Links to discussion and patches about this issue: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/commit/?id=3c7dcdac5c50 https://lore.kernel.org/linux-pci/[email protected]/ https://lore.kernel.org/linux-pci/[email protected]/ https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/1541 But the real cause was the fact that during link retraining or after link down event the PIO transfer may take longer time, up to the 1.44s until it times out. This increased probability that a new PIO transfer would be issued by kernel while previous one has not finished yet. After applying this change into the kernel, it is possible to revert the mentioned TF-A hack and SError events do not have to be caught in TF-A EL3. 2024-05-21 not yet calculated CVE-2021-47229
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Immediately reset the MMU context when the SMM flag is cleared Immediately reset the MMU context when the vCPU’s SMM flag is cleared so that the SMM flag in the MMU role is always synchronized with the vCPU’s flag. If RSM fails (which isn’t correctly emulated), KVM will bail without calling post_leave_smm() and leave the MMU in a bad state. The bad MMU role can lead to a NULL pointer dereference when grabbing a shadow page’s rmap for a page fault as the initial lookups for the gfn will happen with the vCPU’s SMM flag (=0), whereas the rmap lookup will use the shadow page’s SMM flag, which comes from the MMU (=1). SMM has an entirely different set of memslots, and so the initial lookup can find a memslot (SMM=0) and then explode on the rmap memslot lookup (SMM=1). general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 1 PID: 8410 Comm: syz-executor382 Not tainted 5.13.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:__gfn_to_rmap arch/x86/kvm/mmu/mmu.c:935 [inline] RIP: 0010:gfn_to_rmap+0x2b0/0x4d0 arch/x86/kvm/mmu/mmu.c:947 Code: <42> 80 3c 20 00 74 08 4c 89 ff e8 f1 79 a9 00 4c 89 fb 4d 8b 37 44 RSP: 0018:ffffc90000ffef98 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888015b9f414 RCX: ffff888019669c40 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000001 RBP: 0000000000000001 R08: ffffffff811d9cdb R09: ffffed10065a6002 R10: ffffed10065a6002 R11: 0000000000000000 R12: dffffc0000000000 R13: 0000000000000003 R14: 0000000000000001 R15: 0000000000000000 FS: 000000000124b300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000028e31000 CR4: 00000000001526e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: rmap_add arch/x86/kvm/mmu/mmu.c:965 [inline] mmu_set_spte+0x862/0xe60 arch/x86/kvm/mmu/mmu.c:2604 __direct_map arch/x86/kvm/mmu/mmu.c:2862 [inline] direct_page_fault+0x1f74/0x2b70 arch/x86/kvm/mmu/mmu.c:3769 kvm_mmu_do_page_fault arch/x86/kvm/mmu.h:124 [inline] kvm_mmu_page_fault+0x199/0x1440 arch/x86/kvm/mmu/mmu.c:5065 vmx_handle_exit+0x26/0x160 arch/x86/kvm/vmx/vmx.c:6122 vcpu_enter_guest+0x3bdd/0x9630 arch/x86/kvm/x86.c:9428 vcpu_run+0x416/0xc20 arch/x86/kvm/x86.c:9494 kvm_arch_vcpu_ioctl_run+0x4e8/0xa40 arch/x86/kvm/x86.c:9722 kvm_vcpu_ioctl+0x70f/0xbb0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3460 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:1069 [inline] __se_sys_ioctl+0xfb/0x170 fs/ioctl.c:1055 do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x440ce9 2024-05-21 not yet calculated CVE-2021-47230
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: can: mcba_usb: fix memory leak in mcba_usb Syzbot reported memory leak in SocketCAN driver for Microchip CAN BUS Analyzer Tool. The problem was in unfreed usb_coherent. In mcba_usb_start() 20 coherent buffers are allocated and there is nothing, that frees them: 1) In callback function the urb is resubmitted and that’s all 2) In disconnect function urbs are simply killed, but URB_FREE_BUFFER is not set (see mcba_usb_start) and this flag cannot be used with coherent buffers. Fail log: | [ 1354.053291][ T8413] mcba_usb 1-1:0.0 can0: device disconnected | [ 1367.059384][ T8420] kmemleak: 20 new suspected memory leaks (see /sys/kernel/debug/kmem) So, all allocated buffers should be freed with usb_free_coherent() explicitly NOTE: The same pattern for allocating and freeing coherent buffers is used in drivers/net/can/usb/kvaser_usb/kvaser_usb_core.c 2024-05-21 not yet calculated CVE-2021-47231
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: can: j1939: fix Use-after-Free, hold skb ref while in use This patch fixes a Use-after-Free found by the syzbot. The problem is that a skb is taken from the per-session skb queue, without incrementing the ref count. This leads to a Use-after-Free if the skb is taken concurrently from the session queue due to a CTS. 2024-05-21 not yet calculated CVE-2021-47232
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: regulator: rt4801: Fix NULL pointer dereference if priv->enable_gpios is NULL devm_gpiod_get_array_optional may return NULL if no GPIO was assigned. 2024-05-21 not yet calculated CVE-2021-47233
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: phy: phy-mtk-tphy: Fix some resource leaks in mtk_phy_init() Use clk_disable_unprepare() in the error path of mtk_phy_init() to fix some resource leaks. 2024-05-21 not yet calculated CVE-2021-47234
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: fix potential use-after-free in ec_bhf_remove static void ec_bhf_remove(struct pci_dev *dev) { … struct ec_bhf_priv *priv = netdev_priv(net_dev); unregister_netdev(net_dev); free_netdev(net_dev); pci_iounmap(dev, priv->dma_io); pci_iounmap(dev, priv->io); … } priv is netdev private data, but it is used after free_netdev(). It can cause use-after-free when accessing priv pointer. So, fix it by moving free_netdev() after pci_iounmap() calls. 2024-05-21 not yet calculated CVE-2021-47235
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: cdc_eem: fix tx fixup skb leak when usbnet transmit a skb, eem fixup it in eem_tx_fixup(), if skb_copy_expand() failed, it return NULL, usbnet_start_xmit() will have no chance to free original skb. fix it by free orginal skb in eem_tx_fixup() first, then check skb clone status, if failed, return NULL to usbnet. 2024-05-21 not yet calculated CVE-2021-47236
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: hamradio: fix memory leak in mkiss_close My local syzbot instance hit memory leak in mkiss_open()[1]. The problem was in missing free_netdev() in mkiss_close(). In mkiss_open() netdevice is allocated and then registered, but in mkiss_close() netdevice was only unregistered, but not freed. Fail log: BUG: memory leak unreferenced object 0xffff8880281ba000 (size 4096): comm “syz-executor.1”, pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 61 78 30 00 00 00 00 00 00 00 00 00 00 00 00 00 ax0…………. 00 27 fa 2a 80 88 ff ff 00 00 00 00 00 00 00 00 .’.*………… backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706e7e8>] alloc_netdev_mqs+0x98/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff8880141a9a00 (size 96): comm “syz-executor.1”, pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): e8 a2 1b 28 80 88 ff ff e8 a2 1b 28 80 88 ff ff …(…….(…. 98 92 9c aa b0 40 02 00 00 00 00 00 00 00 00 00 …..@………. backtrace: [<ffffffff8709f68b>] __hw_addr_create_ex+0x5b/0x310 [<ffffffff8709fb38>] __hw_addr_add_ex+0x1f8/0x2b0 [<ffffffff870a0c7b>] dev_addr_init+0x10b/0x1f0 [<ffffffff8706e88b>] alloc_netdev_mqs+0x13b/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff8880219bfc00 (size 512): comm “syz-executor.1”, pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 00 a0 1b 28 80 88 ff ff 80 8f b1 8d ff ff ff ff …(………… 80 8f b1 8d ff ff ff ff 00 00 00 00 00 00 00 00 ……………. backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706eec7>] alloc_netdev_mqs+0x777/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff888029b2b200 (size 256): comm “syz-executor.1”, pid 11443, jiffies 4295046091 (age 17.660s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ……………. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ……………. backtrace: [<ffffffff81a27201>] kvmalloc_node+0x61/0xf0 [<ffffffff8706f062>] alloc_netdev_mqs+0x912/0xe80 [<ffffffff84e64192>] mkiss_open+0xb2/0x6f0 [1] [<ffffffff842355db>] tty_ldisc_open+0x9b/0x110 [<ffffffff84236488>] tty_set_ldisc+0x2e8/0x670 [<ffffffff8421f7f3>] tty_ioctl+0xda3/0x1440 [<ffffffff81c9f273>] __x64_sys_ioctl+0x193/0x200 [<ffffffff8911263a>] do_syscall_64+0x3a/0xb0 [<ffffffff89200068>] entry_SYSCALL_64_after_hwframe+0x44/0xae 2024-05-21 not yet calculated CVE-2021-47237
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: ipv4: fix memory leak in ip_mc_add1_src BUG: memory leak unreferenced object 0xffff888101bc4c00 (size 32): comm “syz-executor527”, pid 360, jiffies 4294807421 (age 19.329s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ……………. 01 00 00 00 00 00 00 00 ac 14 14 bb 00 00 02 00 ……………. backtrace: [<00000000f17c5244>] kmalloc include/linux/slab.h:558 [inline] [<00000000f17c5244>] kzalloc include/linux/slab.h:688 [inline] [<00000000f17c5244>] ip_mc_add1_src net/ipv4/igmp.c:1971 [inline] [<00000000f17c5244>] ip_mc_add_src+0x95f/0xdb0 net/ipv4/igmp.c:2095 [<000000001cb99709>] ip_mc_source+0x84c/0xea0 net/ipv4/igmp.c:2416 [<0000000052cf19ed>] do_ip_setsockopt net/ipv4/ip_sockglue.c:1294 [inline] [<0000000052cf19ed>] ip_setsockopt+0x114b/0x30c0 net/ipv4/ip_sockglue.c:1423 [<00000000477edfbc>] raw_setsockopt+0x13d/0x170 net/ipv4/raw.c:857 [<00000000e75ca9bb>] __sys_setsockopt+0x158/0x270 net/socket.c:2117 [<00000000bdb993a8>] __do_sys_setsockopt net/socket.c:2128 [inline] [<00000000bdb993a8>] __se_sys_setsockopt net/socket.c:2125 [inline] [<00000000bdb993a8>] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2125 [<000000006a1ffdbd>] do_syscall_64+0x40/0x80 arch/x86/entry/common.c:47 [<00000000b11467c4>] entry_SYSCALL_64_after_hwframe+0x44/0xae In commit 24803f38a5c0 (“igmp: do not remove igmp souce list info when set link down”), the ip_mc_clear_src() in ip_mc_destroy_dev() was removed, because it was also called in igmpv3_clear_delrec(). Rough callgraph: inetdev_destroy -> ip_mc_destroy_dev -> igmpv3_clear_delrec -> ip_mc_clear_src -> RCU_INIT_POINTER(dev->ip_ptr, NULL) However, ip_mc_clear_src() called in igmpv3_clear_delrec() doesn’t release in_dev->mc_list->sources. And RCU_INIT_POINTER() assigns the NULL to dev->ip_ptr. As a result, in_dev cannot be obtained through inetdev_by_index() and then in_dev->mc_list->sources cannot be released by ip_mc_del1_src() in the sock_close. Rough call sequence goes like: sock_close -> __sock_release -> inet_release -> ip_mc_drop_socket -> inetdev_by_index -> ip_mc_leave_src -> ip_mc_del_src -> ip_mc_del1_src So we still need to call ip_mc_clear_src() in ip_mc_destroy_dev() to free in_dev->mc_list->sources. 2024-05-21 not yet calculated CVE-2021-47238
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: usb: fix possible use-after-free in smsc75xx_bind The commit 46a8b29c6306 (“net: usb: fix memory leak in smsc75xx_bind”) fails to clean up the work scheduled in smsc75xx_reset-> smsc75xx_set_multicast, which leads to use-after-free if the work is scheduled to start after the deallocation. In addition, this patch also removes a dangling pointer – dev->data[0]. This patch calls cancel_work_sync to cancel the scheduled work and set the dangling pointer to NULL. 2024-05-21 not yet calculated CVE-2021-47239
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: qrtr: fix OOB Read in qrtr_endpoint_post Syzbot reported slab-out-of-bounds Read in qrtr_endpoint_post. The problem was in wrong _size_ type: if (len != ALIGN(size, 4) + hdrlen) goto err; If size from qrtr_hdr is 4294967293 (0xfffffffd), the result of ALIGN(size, 4) will be 0. In case of len == hdrlen and size == 4294967293 in header this check won’t fail and skb_put_data(skb, data + hdrlen, size); will read out of bound from data, which is hdrlen allocated block. 2024-05-21 not yet calculated CVE-2021-47240
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ethtool: strset: fix message length calculation Outer nest for ETHTOOL_A_STRSET_STRINGSETS is not accounted for. This may result in ETHTOOL_MSG_STRSET_GET producing a warning like: calculated message payload length (684) not sufficient WARNING: CPU: 0 PID: 30967 at net/ethtool/netlink.c:369 ethnl_default_doit+0x87a/0xa20 and a splat. As usually with such warnings three conditions must be met for the warning to trigger: – there must be no skb size rounding up (e.g. reply_size of 684); – string set must be per-device (so that the header gets populated); – the device name must be at least 12 characters long. all in all with current user space it looks like reading priv flags is the only place this could potentially happen. Or with syzbot 🙂 2024-05-21 not yet calculated CVE-2021-47241
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix soft lookup in subflow_error_report() Maxim reported a soft lookup in subflow_error_report(): watchdog: BUG: soft lockup – CPU#0 stuck for 22s! [swapper/0:0] RIP: 0010:native_queued_spin_lock_slowpath RSP: 0018:ffffa859c0003bc0 EFLAGS: 00000202 RAX: 0000000000000101 RBX: 0000000000000001 RCX: 0000000000000000 RDX: ffff9195c2772d88 RSI: 0000000000000000 RDI: ffff9195c2772d88 RBP: ffff9195c2772d00 R08: 00000000000067b0 R09: c6e31da9eb1e44f4 R10: ffff9195ef379700 R11: ffff9195edb50710 R12: ffff9195c2772d88 R13: ffff9195f500e3d0 R14: ffff9195ef379700 R15: ffff9195ef379700 FS: 0000000000000000(0000) GS:ffff91961f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000c000407000 CR3: 0000000002988000 CR4: 00000000000006f0 Call Trace: <IRQ> _raw_spin_lock_bh subflow_error_report mptcp_subflow_data_available __mptcp_move_skbs_from_subflow mptcp_data_ready tcp_data_queue tcp_rcv_established tcp_v4_do_rcv tcp_v4_rcv ip_protocol_deliver_rcu ip_local_deliver_finish __netif_receive_skb_one_core netif_receive_skb rtl8139_poll 8139too __napi_poll net_rx_action __do_softirq __irq_exit_rcu common_interrupt </IRQ> The calling function – mptcp_subflow_data_available() – can be invoked from different contexts: – plain ssk socket lock – ssk socket lock + mptcp_data_lock – ssk socket lock + mptcp_data_lock + msk socket lock. Since subflow_error_report() tries to acquire the mptcp_data_lock, the latter two call chains will cause soft lookup. This change addresses the issue moving the error reporting call to outer functions, where the held locks list is known and the we can acquire only the needed one. 2024-05-21 not yet calculated CVE-2021-47242
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: sch_cake: Fix out of bounds when parsing TCP options and header The TCP option parser in cake qdisc (cake_get_tcpopt and cake_tcph_may_drop) could read one byte out of bounds. When the length is 1, the execution flow gets into the loop, reads one byte of the opcode, and if the opcode is neither TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the length of 1. This fix is inspired by commit 9609dad263f8 (“ipv4: tcp_input: fix stack out of bounds when parsing TCP options.”). v2 changes: Added doff validation in cake_get_tcphdr to avoid parsing garbage as TCP header. Although it wasn’t strictly an out-of-bounds access (memory was allocated), garbage values could be read where CAKE expected the TCP header if doff was smaller than 5. 2024-05-21 not yet calculated CVE-2021-47243
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mptcp: Fix out of bounds when parsing TCP options The TCP option parser in mptcp (mptcp_get_options) could read one byte out of bounds. When the length is 1, the execution flow gets into the loop, reads one byte of the opcode, and if the opcode is neither TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the length of 1. This fix is inspired by commit 9609dad263f8 (“ipv4: tcp_input: fix stack out of bounds when parsing TCP options.”). 2024-05-21 not yet calculated CVE-2021-47244
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: netfilter: synproxy: Fix out of bounds when parsing TCP options The TCP option parser in synproxy (synproxy_parse_options) could read one byte out of bounds. When the length is 1, the execution flow gets into the loop, reads one byte of the opcode, and if the opcode is neither TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the length of 1. This fix is inspired by commit 9609dad263f8 (“ipv4: tcp_input: fix stack out of bounds when parsing TCP options.”). v2 changes: Added an early return when length < 0 to avoid calling skb_header_pointer with negative length. 2024-05-21 not yet calculated CVE-2021-47245
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix page reclaim for dead peer hairpin When adding a hairpin flow, a firmware-side send queue is created for the peer net device, which claims some host memory pages for its internal ring buffer. If the peer net device is removed/unbound before the hairpin flow is deleted, then the send queue is not destroyed which leads to a stack trace on pci device remove: [ 748.005230] mlx5_core 0000:08:00.2: wait_func:1094:(pid 12985): MANAGE_PAGES(0x108) timeout. Will cause a leak of a command resource [ 748.005231] mlx5_core 0000:08:00.2: reclaim_pages:514:(pid 12985): failed reclaiming pages: err -110 [ 748.001835] mlx5_core 0000:08:00.2: mlx5_reclaim_root_pages:653:(pid 12985): failed reclaiming pages (-110) for func id 0x0 [ 748.002171] ————[ cut here ]———— [ 748.001177] FW pages counter is 4 after reclaiming all pages [ 748.001186] WARNING: CPU: 1 PID: 12985 at drivers/net/ethernet/mellanox/mlx5/core/pagealloc.c:685 mlx5_reclaim_startup_pages+0x34b/0x460 [mlx5_core] [ +0.002771] Modules linked in: cls_flower mlx5_ib mlx5_core ptp pps_core act_mirred sch_ingress openvswitch nsh xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm ib_umad ib_ipoib iw_cm ib_cm ib_uverbs ib_core overlay fuse [last unloaded: pps_core] [ 748.007225] CPU: 1 PID: 12985 Comm: tee Not tainted 5.12.0+ #1 [ 748.001376] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 748.002315] RIP: 0010:mlx5_reclaim_startup_pages+0x34b/0x460 [mlx5_core] [ 748.001679] Code: 28 00 00 00 0f 85 22 01 00 00 48 81 c4 b0 00 00 00 31 c0 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 c7 c7 40 cc 19 a1 e8 9f 71 0e e2 <0f> 0b e9 30 ff ff ff 48 c7 c7 a0 cc 19 a1 e8 8c 71 0e e2 0f 0b e9 [ 748.003781] RSP: 0018:ffff88815220faf8 EFLAGS: 00010286 [ 748.001149] RAX: 0000000000000000 RBX: ffff8881b4900280 RCX: 0000000000000000 [ 748.001445] RDX: 0000000000000027 RSI: 0000000000000004 RDI: ffffed102a441f51 [ 748.001614] RBP: 00000000000032b9 R08: 0000000000000001 R09: ffffed1054a15ee8 [ 748.001446] R10: ffff8882a50af73b R11: ffffed1054a15ee7 R12: fffffbfff07c1e30 [ 748.001447] R13: dffffc0000000000 R14: ffff8881b492cba8 R15: 0000000000000000 [ 748.001429] FS: 00007f58bd08b580(0000) GS:ffff8882a5080000(0000) knlGS:0000000000000000 [ 748.001695] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 748.001309] CR2: 000055a026351740 CR3: 00000001d3b48006 CR4: 0000000000370ea0 [ 748.001506] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 748.001483] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 748.001654] Call Trace: [ 748.000576] ? mlx5_satisfy_startup_pages+0x290/0x290 [mlx5_core] [ 748.001416] ? mlx5_cmd_teardown_hca+0xa2/0xd0 [mlx5_core] [ 748.001354] ? mlx5_cmd_init_hca+0x280/0x280 [mlx5_core] [ 748.001203] mlx5_function_teardown+0x30/0x60 [mlx5_core] [ 748.001275] mlx5_uninit_one+0xa7/0xc0 [mlx5_core] [ 748.001200] remove_one+0x5f/0xc0 [mlx5_core] [ 748.001075] pci_device_remove+0x9f/0x1d0 [ 748.000833] device_release_driver_internal+0x1e0/0x490 [ 748.001207] unbind_store+0x19f/0x200 [ 748.000942] ? sysfs_file_ops+0x170/0x170 [ 748.001000] kernfs_fop_write_iter+0x2bc/0x450 [ 748.000970] new_sync_write+0x373/0x610 [ 748.001124] ? new_sync_read+0x600/0x600 [ 748.001057] ? lock_acquire+0x4d6/0x700 [ 748.000908] ? lockdep_hardirqs_on_prepare+0x400/0x400 [ 748.001126] ? fd_install+0x1c9/0x4d0 [ 748.000951] vfs_write+0x4d0/0x800 [ 748.000804] ksys_write+0xf9/0x1d0 [ 748.000868] ? __x64_sys_read+0xb0/0xb0 [ 748.000811] ? filp_open+0x50/0x50 [ 748.000919] ? syscall_enter_from_user_mode+0x1d/0x50 [ 748.001223] do_syscall_64+0x3f/0x80 [ 748.000892] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 748.00 —truncated— 2024-05-21 not yet calculated CVE-2021-47246
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix use-after-free of encap entry in neigh update handler Function mlx5e_rep_neigh_update() wasn’t updated to accommodate rtnl lock removal from TC filter update path and properly handle concurrent encap entry insertion/deletion which can lead to following use-after-free: [23827.464923] ================================================================== [23827.469446] BUG: KASAN: use-after-free in mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.470971] Read of size 4 at addr ffff8881d132228c by task kworker/u20:6/21635 [23827.472251] [23827.472615] CPU: 9 PID: 21635 Comm: kworker/u20:6 Not tainted 5.13.0-rc3+ #5 [23827.473788] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [23827.475639] Workqueue: mlx5e mlx5e_rep_neigh_update [mlx5_core] [23827.476731] Call Trace: [23827.477260] dump_stack+0xbb/0x107 [23827.477906] print_address_description.constprop.0+0x18/0x140 [23827.478896] ? mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.479879] ? mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.480905] kasan_report.cold+0x7c/0xd8 [23827.481701] ? mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.482744] kasan_check_range+0x145/0x1a0 [23827.493112] mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.494054] ? mlx5e_tc_tun_encap_info_equal_generic+0x140/0x140 [mlx5_core] [23827.495296] mlx5e_rep_neigh_update+0x41e/0x5e0 [mlx5_core] [23827.496338] ? mlx5e_rep_neigh_entry_release+0xb80/0xb80 [mlx5_core] [23827.497486] ? read_word_at_a_time+0xe/0x20 [23827.498250] ? strscpy+0xa0/0x2a0 [23827.498889] process_one_work+0x8ac/0x14e0 [23827.499638] ? lockdep_hardirqs_on_prepare+0x400/0x400 [23827.500537] ? pwq_dec_nr_in_flight+0x2c0/0x2c0 [23827.501359] ? rwlock_bug.part.0+0x90/0x90 [23827.502116] worker_thread+0x53b/0x1220 [23827.502831] ? process_one_work+0x14e0/0x14e0 [23827.503627] kthread+0x328/0x3f0 [23827.504254] ? _raw_spin_unlock_irq+0x24/0x40 [23827.505065] ? __kthread_bind_mask+0x90/0x90 [23827.505912] ret_from_fork+0x1f/0x30 [23827.506621] [23827.506987] Allocated by task 28248: [23827.507694] kasan_save_stack+0x1b/0x40 [23827.508476] __kasan_kmalloc+0x7c/0x90 [23827.509197] mlx5e_attach_encap+0xde1/0x1d40 [mlx5_core] [23827.510194] mlx5e_tc_add_fdb_flow+0x397/0xc40 [mlx5_core] [23827.511218] __mlx5e_add_fdb_flow+0x519/0xb30 [mlx5_core] [23827.512234] mlx5e_configure_flower+0x191c/0x4870 [mlx5_core] [23827.513298] tc_setup_cb_add+0x1d5/0x420 [23827.514023] fl_hw_replace_filter+0x382/0x6a0 [cls_flower] [23827.514975] fl_change+0x2ceb/0x4a51 [cls_flower] [23827.515821] tc_new_tfilter+0x89a/0x2070 [23827.516548] rtnetlink_rcv_msg+0x644/0x8c0 [23827.517300] netlink_rcv_skb+0x11d/0x340 [23827.518021] netlink_unicast+0x42b/0x700 [23827.518742] netlink_sendmsg+0x743/0xc20 [23827.519467] sock_sendmsg+0xb2/0xe0 [23827.520131] ____sys_sendmsg+0x590/0x770 [23827.520851] ___sys_sendmsg+0xd8/0x160 [23827.521552] __sys_sendmsg+0xb7/0x140 [23827.522238] do_syscall_64+0x3a/0x70 [23827.522907] entry_SYSCALL_64_after_hwframe+0x44/0xae [23827.523797] [23827.524163] Freed by task 25948: [23827.524780] kasan_save_stack+0x1b/0x40 [23827.525488] kasan_set_track+0x1c/0x30 [23827.526187] kasan_set_free_info+0x20/0x30 [23827.526968] __kasan_slab_free+0xed/0x130 [23827.527709] slab_free_freelist_hook+0xcf/0x1d0 [23827.528528] kmem_cache_free_bulk+0x33a/0x6e0 [23827.529317] kfree_rcu_work+0x55f/0xb70 [23827.530024] process_one_work+0x8ac/0x14e0 [23827.530770] worker_thread+0x53b/0x1220 [23827.531480] kthread+0x328/0x3f0 [23827.532114] ret_from_fork+0x1f/0x30 [23827.532785] [23827.533147] Last potentially related work creation: [23827.534007] kasan_save_stack+0x1b/0x40 [23827.534710] kasan_record_aux_stack+0xab/0xc0 [23827.535492] kvfree_call_rcu+0x31/0x7b0 [23827.536206] mlx5e_tc_del —truncated— 2024-05-21 not yet calculated CVE-2021-47247
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: udp: fix race between close() and udp_abort() Kaustubh reported and diagnosed a panic in udp_lib_lookup(). The root cause is udp_abort() racing with close(). Both racing functions acquire the socket lock, but udp{v6}_destroy_sock() release it before performing destructive actions. We can’t easily extend the socket lock scope to avoid the race, instead use the SOCK_DEAD flag to prevent udp_abort from doing any action when the critical race happens. Diagnosed-and-tested-by: Kaustubh Pandey <[email protected]> 2024-05-21 not yet calculated CVE-2021-47248
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: rds: fix memory leak in rds_recvmsg Syzbot reported memory leak in rds. The problem was in unputted refcount in case of error. int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int msg_flags) { … if (!rds_next_incoming(rs, &inc)) { … } After this “if” inc refcount incremented and if (rds_cmsg_recv(inc, msg, rs)) { ret = -EFAULT; goto out; } … out: return ret; } in case of rds_cmsg_recv() fail the refcount won’t be decremented. And it’s easy to see from ftrace log, that rds_inc_addref() don’t have rds_inc_put() pair in rds_recvmsg() after rds_cmsg_recv() 1) | rds_recvmsg() { 1) 3.721 us | rds_inc_addref(); 1) 3.853 us | rds_message_inc_copy_to_user(); 1) + 10.395 us | rds_cmsg_recv(); 1) + 34.260 us | } 2024-05-21 not yet calculated CVE-2021-47249
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: ipv4: fix memory leak in netlbl_cipsov4_add_std Reported by syzkaller: BUG: memory leak unreferenced object 0xffff888105df7000 (size 64): comm “syz-executor842”, pid 360, jiffies 4294824824 (age 22.546s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ……………. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ……………. backtrace: [<00000000e67ed558>] kmalloc include/linux/slab.h:590 [inline] [<00000000e67ed558>] kzalloc include/linux/slab.h:720 [inline] [<00000000e67ed558>] netlbl_cipsov4_add_std net/netlabel/netlabel_cipso_v4.c:145 [inline] [<00000000e67ed558>] netlbl_cipsov4_add+0x390/0x2340 net/netlabel/netlabel_cipso_v4.c:416 [<0000000006040154>] genl_family_rcv_msg_doit.isra.0+0x20e/0x320 net/netlink/genetlink.c:739 [<00000000204d7a1c>] genl_family_rcv_msg net/netlink/genetlink.c:783 [inline] [<00000000204d7a1c>] genl_rcv_msg+0x2bf/0x4f0 net/netlink/genetlink.c:800 [<00000000c0d6a995>] netlink_rcv_skb+0x134/0x3d0 net/netlink/af_netlink.c:2504 [<00000000d78b9d2c>] genl_rcv+0x24/0x40 net/netlink/genetlink.c:811 [<000000009733081b>] netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline] [<000000009733081b>] netlink_unicast+0x4a0/0x6a0 net/netlink/af_netlink.c:1340 [<00000000d5fd43b8>] netlink_sendmsg+0x789/0xc70 net/netlink/af_netlink.c:1929 [<000000000a2d1e40>] sock_sendmsg_nosec net/socket.c:654 [inline] [<000000000a2d1e40>] sock_sendmsg+0x139/0x170 net/socket.c:674 [<00000000321d1969>] ____sys_sendmsg+0x658/0x7d0 net/socket.c:2350 [<00000000964e16bc>] ___sys_sendmsg+0xf8/0x170 net/socket.c:2404 [<000000001615e288>] __sys_sendmsg+0xd3/0x190 net/socket.c:2433 [<000000004ee8b6a5>] do_syscall_64+0x37/0x90 arch/x86/entry/common.c:47 [<00000000171c7cee>] entry_SYSCALL_64_after_hwframe+0x44/0xae The memory of doi_def->map.std pointing is allocated in netlbl_cipsov4_add_std, but no place has freed it. It should be freed in cipso_v4_doi_free which frees the cipso DOI resource. 2024-05-21 not yet calculated CVE-2021-47250
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mac80211: fix skb length check in ieee80211_scan_rx() Replace hard-coded compile-time constants for header length check with dynamic determination based on the frame type. Otherwise, we hit a validation WARN_ON in cfg80211 later. [style fixes, reword commit message] 2024-05-21 not yet calculated CVE-2021-47251
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: batman-adv: Avoid WARN_ON timing related checks The soft/batadv interface for a queued OGM can be changed during the time the OGM was queued for transmission and when the OGM is actually transmitted by the worker. But WARN_ON must be used to denote kernel bugs and not to print simple warnings. A warning can simply be printed using pr_warn. 2024-05-21 not yet calculated CVE-2021-47252
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix potential memory leak in DMUB hw_init [Why] On resume we perform DMUB hw_init which allocates memory: dm_resume->dm_dmub_hw_init->dc_dmub_srv_create->kzalloc That results in memory leak in suspend/resume scenarios. [How] Allocate memory for the DC wrapper to DMUB only if it was not allocated before. No need to reallocate it on suspend/resume. 2024-05-21 not yet calculated CVE-2021-47253
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix use-after-free in gfs2_glock_shrink_scan The GLF_LRU flag is checked under lru_lock in gfs2_glock_remove_from_lru() to remove the glock from the lru list in __gfs2_glock_put(). On the shrink scan path, the same flag is cleared under lru_lock but because of cond_resched_lock(&lru_lock) in gfs2_dispose_glock_lru(), progress on the put side can be made without deleting the glock from the lru list. Keep GLF_LRU across the race window opened by cond_resched_lock(&lru_lock) to ensure correct behavior on both sides – clear GLF_LRU after list_del under lru_lock. 2024-05-21 not yet calculated CVE-2021-47254
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: kvm: LAPIC: Restore guard to prevent illegal APIC register access Per the SDM, “any access that touches bytes 4 through 15 of an APIC register may cause undefined behavior and must not be executed.” Worse, such an access in kvm_lapic_reg_read can result in a leak of kernel stack contents. Prior to commit 01402cf81051 (“kvm: LAPIC: write down valid APIC registers”), such an access was explicitly disallowed. Restore the guard that was removed in that commit. 2024-05-21 not yet calculated CVE-2021-47255
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mm/memory-failure: make sure wait for page writeback in memory_failure Our syzkaller trigger the “BUG_ON(!list_empty(&inode->i_wb_list))” in clear_inode: kernel BUG at fs/inode.c:519! Internal error: Oops – BUG: 0 [#1] SMP Modules linked in: Process syz-executor.0 (pid: 249, stack limit = 0x00000000a12409d7) CPU: 1 PID: 249 Comm: syz-executor.0 Not tainted 4.19.95 Hardware name: linux,dummy-virt (DT) pstate: 80000005 (Nzcv daif -PAN -UAO) pc : clear_inode+0x280/0x2a8 lr : clear_inode+0x280/0x2a8 Call trace: clear_inode+0x280/0x2a8 ext4_clear_inode+0x38/0xe8 ext4_free_inode+0x130/0xc68 ext4_evict_inode+0xb20/0xcb8 evict+0x1a8/0x3c0 iput+0x344/0x460 do_unlinkat+0x260/0x410 __arm64_sys_unlinkat+0x6c/0xc0 el0_svc_common+0xdc/0x3b0 el0_svc_handler+0xf8/0x160 el0_svc+0x10/0x218 Kernel panic – not syncing: Fatal exception A crash dump of this problem show that someone called __munlock_pagevec to clear page LRU without lock_page: do_mmap -> mmap_region -> do_munmap -> munlock_vma_pages_range -> __munlock_pagevec. As a result memory_failure will call identify_page_state without wait_on_page_writeback. And after truncate_error_page clear the mapping of this page. end_page_writeback won’t call sb_clear_inode_writeback to clear inode->i_wb_list. That will trigger BUG_ON in clear_inode! Fix it by checking PageWriteback too to help determine should we skip wait_on_page_writeback. 2024-05-21 not yet calculated CVE-2021-47256
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: ieee802154: fix null deref in parse dev addr Fix a logic error that could result in a null deref if the user sets the mode incorrectly for the given addr type. 2024-05-21 not yet calculated CVE-2021-47257
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: scsi: core: Fix error handling of scsi_host_alloc() After device is initialized via device_initialize(), or its name is set via dev_set_name(), the device has to be freed via put_device(). Otherwise device name will be leaked because it is allocated dynamically in dev_set_name(). Fix the leak by replacing kfree() with put_device(). Since scsi_host_dev_release() properly handles IDA and kthread removal, remove special-casing these from the error handling as well. 2024-05-21 not yet calculated CVE-2021-47258
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix use-after-free in nfs4_init_client() KASAN reports a use-after-free when attempting to mount two different exports through two different NICs that belong to the same server. Olga was able to hit this with kernels starting somewhere between 5.7 and 5.10, but I traced the patch that introduced the clear_bit() call to 4.13. So something must have changed in the refcounting of the clp pointer to make this call to nfs_put_client() the very last one. 2024-05-21 not yet calculated CVE-2021-47259
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix a potential NULL dereference in nfs_get_client() None of the callers are expecting NULL returns from nfs_get_client() so this code will lead to an Oops. It’s better to return an error pointer. I expect that this is dead code so hopefully no one is affected. 2024-05-21 not yet calculated CVE-2021-47260
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: IB/mlx5: Fix initializing CQ fragments buffer The function init_cq_frag_buf() can be called to initialize the current CQ fragments buffer cq->buf, or the temporary cq->resize_buf that is filled during CQ resize operation. However, the offending commit started to use function get_cqe() for getting the CQEs, the issue with this change is that get_cqe() always returns CQEs from cq->buf, which leads us to initialize the wrong buffer, and in case of enlarging the CQ we try to access elements beyond the size of the current cq->buf and eventually hit a kernel panic. [exception RIP: init_cq_frag_buf+103] [ffff9f799ddcbcd8] mlx5_ib_resize_cq at ffffffffc0835d60 [mlx5_ib] [ffff9f799ddcbdb0] ib_resize_cq at ffffffffc05270df [ib_core] [ffff9f799ddcbdc0] llt_rdma_setup_qp at ffffffffc0a6a712 [llt] [ffff9f799ddcbe10] llt_rdma_cc_event_action at ffffffffc0a6b411 [llt] [ffff9f799ddcbe98] llt_rdma_client_conn_thread at ffffffffc0a6bb75 [llt] [ffff9f799ddcbec8] kthread at ffffffffa66c5da1 [ffff9f799ddcbf50] ret_from_fork_nospec_begin at ffffffffa6d95ddd Fix it by getting the needed CQE by calling mlx5_frag_buf_get_wqe() that takes the correct source buffer as a parameter. 2024-05-21 not yet calculated CVE-2021-47261
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Ensure liveliness of nested VM-Enter fail tracepoint message Use the __string() machinery provided by the tracing subystem to make a copy of the string literals consumed by the “nested VM-Enter failed” tracepoint. A complete copy is necessary to ensure that the tracepoint can’t outlive the data/memory it consumes and deference stale memory. Because the tracepoint itself is defined by kvm, if kvm-intel and/or kvm-amd are built as modules, the memory holding the string literals defined by the vendor modules will be freed when the module is unloaded, whereas the tracepoint and its data in the ring buffer will live until kvm is unloaded (or “indefinitely” if kvm is built-in). This bug has existed since the tracepoint was added, but was recently exposed by a new check in tracing to detect exactly this type of bug. fmt: ‘%s%s ‘ current_buffer: ‘ vmx_dirty_log_t-140127 [003] …. kvm_nested_vmenter_failed: ‘ WARNING: CPU: 3 PID: 140134 at kernel/trace/trace.c:3759 trace_check_vprintf+0x3be/0x3e0 CPU: 3 PID: 140134 Comm: less Not tainted 5.13.0-rc1-ce2e73ce600a-req #184 Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014 RIP: 0010:trace_check_vprintf+0x3be/0x3e0 Code: <0f> 0b 44 8b 4c 24 1c e9 a9 fe ff ff c6 44 02 ff 00 49 8b 97 b0 20 RSP: 0018:ffffa895cc37bcb0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffa895cc37bd08 RCX: 0000000000000027 RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff9766cfad74f8 RBP: ffffffffc0a041d4 R08: ffff9766cfad74f0 R09: ffffa895cc37bad8 R10: 0000000000000001 R11: 0000000000000001 R12: ffffffffc0a041d4 R13: ffffffffc0f4dba8 R14: 0000000000000000 R15: ffff976409f2c000 FS: 00007f92fa200740(0000) GS:ffff9766cfac0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000559bd11b0000 CR3: 000000019fbaa002 CR4: 00000000001726e0 Call Trace: trace_event_printf+0x5e/0x80 trace_raw_output_kvm_nested_vmenter_failed+0x3a/0x60 [kvm] print_trace_line+0x1dd/0x4e0 s_show+0x45/0x150 seq_read_iter+0x2d5/0x4c0 seq_read+0x106/0x150 vfs_read+0x98/0x180 ksys_read+0x5f/0xe0 do_syscall_64+0x40/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae 2024-05-21 not yet calculated CVE-2021-47262
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: gpio: wcd934x: Fix shift-out-of-bounds error bit-mask for pins 0 to 4 is BIT(0) to BIT(4) however we ended up with BIT(n – 1) which is not right, and this was caught by below usban check UBSAN: shift-out-of-bounds in drivers/gpio/gpio-wcd934x.c:34:14 2024-05-21 not yet calculated CVE-2021-47263
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ASoC: core: Fix Null-point-dereference in fmt_single_name() Check the return value of devm_kstrdup() in case of Null-point-dereference. 2024-05-21 not yet calculated CVE-2021-47264
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: RDMA: Verify port when creating flow rule Validate port value provided by the user and with that remove no longer needed validation by the driver. The missing check in the mlx5_ib driver could cause to the below oops. Call trace: _create_flow_rule+0x2d4/0xf28 [mlx5_ib] mlx5_ib_create_flow+0x2d0/0x5b0 [mlx5_ib] ib_uverbs_ex_create_flow+0x4cc/0x624 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0xd4/0x150 [ib_uverbs] ib_uverbs_cmd_verbs.isra.7+0xb28/0xc50 [ib_uverbs] ib_uverbs_ioctl+0x158/0x1d0 [ib_uverbs] do_vfs_ioctl+0xd0/0xaf0 ksys_ioctl+0x84/0xb4 __arm64_sys_ioctl+0x28/0xc4 el0_svc_common.constprop.3+0xa4/0x254 el0_svc_handler+0x84/0xa0 el0_svc+0x10/0x26c Code: b9401260 f9615681 51000400 8b001c20 (f9403c1a) 2024-05-21 not yet calculated CVE-2021-47265
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: RDMA/ipoib: Fix warning caused by destroying non-initial netns After the commit 5ce2dced8e95 (“RDMA/ipoib: Set rtnl_link_ops for ipoib interfaces”), if the IPoIB device is moved to non-initial netns, destroying that netns lets the device vanish instead of moving it back to the initial netns, This is happening because default_device_exit() skips the interfaces due to having rtnl_link_ops set. Steps to reporoduce: ip netns add foo ip link set mlx5_ib0 netns foo ip netns delete foo WARNING: CPU: 1 PID: 704 at net/core/dev.c:11435 netdev_exit+0x3f/0x50 Modules linked in: xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT nf_reject_ipv4 nft_compat nft_counter nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables nfnetlink tun d fuse CPU: 1 PID: 704 Comm: kworker/u64:3 Tainted: G S W 5.13.0-rc1+ #1 Hardware name: Dell Inc. PowerEdge R630/02C2CP, BIOS 2.1.5 04/11/2016 Workqueue: netns cleanup_net RIP: 0010:netdev_exit+0x3f/0x50 Code: 48 8b bb 30 01 00 00 e8 ef 81 b1 ff 48 81 fb c0 3a 54 a1 74 13 48 8b 83 90 00 00 00 48 81 c3 90 00 00 00 48 39 d8 75 02 5b c3 <0f> 0b 5b c3 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 0f 1f 44 00 RSP: 0018:ffffb297079d7e08 EFLAGS: 00010206 RAX: ffff8eb542c00040 RBX: ffff8eb541333150 RCX: 000000008010000d RDX: 000000008010000e RSI: 000000008010000d RDI: ffff8eb440042c00 RBP: ffffb297079d7e48 R08: 0000000000000001 R09: ffffffff9fdeac00 R10: ffff8eb5003be000 R11: 0000000000000001 R12: ffffffffa1545620 R13: ffffffffa1545628 R14: 0000000000000000 R15: ffffffffa1543b20 FS: 0000000000000000(0000) GS:ffff8ed37fa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005601b5f4c2e8 CR3: 0000001fc8c10002 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ops_exit_list.isra.9+0x36/0x70 cleanup_net+0x234/0x390 process_one_work+0x1cb/0x360 ? process_one_work+0x360/0x360 worker_thread+0x30/0x370 ? process_one_work+0x360/0x360 kthread+0x116/0x130 ? kthread_park+0x80/0x80 ret_from_fork+0x22/0x30 To avoid the above warning and later on the kernel panic that could happen on shutdown due to a NULL pointer dereference, make sure to set the netns_refund flag that was introduced by commit 3a5ca857079e (“can: dev: Move device back to init netns on owning netns delete”) to properly restore the IPoIB interfaces to the initial netns. 2024-05-21 not yet calculated CVE-2021-47266
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: fix various gadget panics on 10gbps cabling usb_assign_descriptors() is called with 5 parameters, the last 4 of which are the usb_descriptor_header for: full-speed (USB1.1 – 12Mbps [including USB1.0 low-speed @ 1.5Mbps), high-speed (USB2.0 – 480Mbps), super-speed (USB3.0 – 5Gbps), super-speed-plus (USB3.1 – 10Gbps). The differences between full/high/super-speed descriptors are usually substantial (due to changes in the maximum usb block size from 64 to 512 to 1024 bytes and other differences in the specs), while the difference between 5 and 10Gbps descriptors may be as little as nothing (in many cases the same tuning is simply good enough). However if a gadget driver calls usb_assign_descriptors() with a NULL descriptor for super-speed-plus and is then used on a max 10gbps configuration, the kernel will crash with a null pointer dereference, when a 10gbps capable device port + cable + host port combination shows up. (This wouldn’t happen if the gadget max-speed was set to 5gbps, but it of course defaults to the maximum, and there’s no real reason to artificially limit it) The fix is to simply use the 5gbps descriptor as the 10gbps descriptor, if a 10gbps descriptor wasn’t provided. Obviously this won’t fix the problem if the 5gbps descriptor is also NULL, but such cases can’t be so trivially solved (and any such gadgets are unlikely to be used with USB3 ports any way). 2024-05-21 not yet calculated CVE-2021-47267
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: typec: tcpm: cancel vdm and state machine hrtimer when unregister tcpm port A pending hrtimer may expire after the kthread_worker of tcpm port is destroyed, see below kernel dump when do module unload, fix it by cancel the 2 hrtimers. [ 111.517018] Unable to handle kernel paging request at virtual address ffff8000118cb880 [ 111.518786] blk_update_request: I/O error, dev sda, sector 60061185 op 0x0:(READ) flags 0x0 phys_seg 1 prio class 0 [ 111.526594] Mem abort info: [ 111.526597] ESR = 0x96000047 [ 111.526600] EC = 0x25: DABT (current EL), IL = 32 bits [ 111.526604] SET = 0, FnV = 0 [ 111.526607] EA = 0, S1PTW = 0 [ 111.526610] Data abort info: [ 111.526612] ISV = 0, ISS = 0x00000047 [ 111.526615] CM = 0, WnR = 1 [ 111.526619] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000041d75000 [ 111.526623] [ffff8000118cb880] pgd=10000001bffff003, p4d=10000001bffff003, pud=10000001bfffe003, pmd=10000001bfffa003, pte=0000000000000000 [ 111.526642] Internal error: Oops: 96000047 [#1] PREEMPT SMP [ 111.526647] Modules linked in: dwc3_imx8mp dwc3 phy_fsl_imx8mq_usb [last unloaded: tcpci] [ 111.526663] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.13.0-rc4-00927-gebbe9dbd802c-dirty #36 [ 111.526670] Hardware name: NXP i.MX8MPlus EVK board (DT) [ 111.526674] pstate: 800000c5 (Nzcv daIF -PAN -UAO -TCO BTYPE=–) [ 111.526681] pc : queued_spin_lock_slowpath+0x1a0/0x390 [ 111.526695] lr : _raw_spin_lock_irqsave+0x88/0xb4 [ 111.526703] sp : ffff800010003e20 [ 111.526706] x29: ffff800010003e20 x28: ffff00017f380180 [ 111.537156] buffer_io_error: 6 callbacks suppressed [ 111.537162] Buffer I/O error on dev sda1, logical block 60040704, async page read [ 111.539932] x27: ffff00017f3801c0 [ 111.539938] x26: ffff800010ba2490 x25: 0000000000000000 x24: 0000000000000001 [ 111.543025] blk_update_request: I/O error, dev sda, sector 60061186 op 0x0:(READ) flags 0x0 phys_seg 7 prio class 0 [ 111.548304] [ 111.548306] x23: 00000000000000c0 x22: ffff0000c2a9f184 x21: ffff00017f380180 [ 111.551374] Buffer I/O error on dev sda1, logical block 60040705, async page read [ 111.554499] [ 111.554503] x20: ffff0000c5f14210 x19: 00000000000000c0 x18: 0000000000000000 [ 111.557391] Buffer I/O error on dev sda1, logical block 60040706, async page read [ 111.561218] [ 111.561222] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 [ 111.564205] Buffer I/O error on dev sda1, logical block 60040707, async page read [ 111.570887] x14: 00000000000000f5 x13: 0000000000000001 x12: 0000000000000040 [ 111.570902] x11: ffff0000c05ac6d8 [ 111.583420] Buffer I/O error on dev sda1, logical block 60040708, async page read [ 111.588978] x10: 0000000000000000 x9 : 0000000000040000 [ 111.588988] x8 : 0000000000000000 [ 111.597173] Buffer I/O error on dev sda1, logical block 60040709, async page read [ 111.605766] x7 : ffff00017f384880 x6 : ffff8000118cb880 [ 111.605777] x5 : ffff00017f384880 [ 111.611094] Buffer I/O error on dev sda1, logical block 60040710, async page read [ 111.617086] x4 : 0000000000000000 x3 : ffff0000c2a9f184 [ 111.617096] x2 : ffff8000118cb880 [ 111.622242] Buffer I/O error on dev sda1, logical block 60040711, async page read [ 111.626927] x1 : ffff8000118cb880 x0 : ffff00017f384888 [ 111.626938] Call trace: [ 111.626942] queued_spin_lock_slowpath+0x1a0/0x390 [ 111.795809] kthread_queue_work+0x30/0xc0 [ 111.799828] state_machine_timer_handler+0x20/0x30 [ 111.804624] __hrtimer_run_queues+0x140/0x1e0 [ 111.808990] hrtimer_interrupt+0xec/0x2c0 [ 111.813004] arch_timer_handler_phys+0x38/0x50 [ 111.817456] handle_percpu_devid_irq+0x88/0x150 [ 111.821991] __handle_domain_irq+0x80/0xe0 [ 111.826093] gic_handle_irq+0xc0/0x140 [ 111.829848] el1_irq+0xbc/0x154 [ 111.832991] arch_cpu_idle+0x1c/0x2c [ 111.836572] default_idle_call+0x24/0x6c [ 111.840497] do_idle+0x238/0x2ac [ 1 —truncated— 2024-05-21 not yet calculated CVE-2021-47268
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: ep0: fix NULL pointer exception There is no validation of the index from dwc3_wIndex_to_dep() and we might be referring a non-existing ep and trigger a NULL pointer exception. In certain configurations we might use fewer eps and the index might wrongly indicate a larger ep index than existing. By adding this validation from the patch we can actually report a wrong index back to the caller. In our usecase we are using a composite device on an older kernel, but upstream might use this fix also. Unfortunately, I cannot describe the hardware for others to reproduce the issue as it is a proprietary implementation. [ 82.958261] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a4 [ 82.966891] Mem abort info: [ 82.969663] ESR = 0x96000006 [ 82.972703] Exception class = DABT (current EL), IL = 32 bits [ 82.978603] SET = 0, FnV = 0 [ 82.981642] EA = 0, S1PTW = 0 [ 82.984765] Data abort info: [ 82.987631] ISV = 0, ISS = 0x00000006 [ 82.991449] CM = 0, WnR = 0 [ 82.994409] user pgtable: 4k pages, 39-bit VAs, pgdp = 00000000c6210ccc [ 83.000999] [00000000000000a4] pgd=0000000053aa5003, pud=0000000053aa5003, pmd=0000000000000000 [ 83.009685] Internal error: Oops: 96000006 [#1] PREEMPT SMP [ 83.026433] Process irq/62-dwc3 (pid: 303, stack limit = 0x000000003985154c) [ 83.033470] CPU: 0 PID: 303 Comm: irq/62-dwc3 Not tainted 4.19.124 #1 [ 83.044836] pstate: 60000085 (nZCv daIf -PAN -UAO) [ 83.049628] pc : dwc3_ep0_handle_feature+0x414/0x43c [ 83.054558] lr : dwc3_ep0_interrupt+0x3b4/0xc94 … [ 83.141788] Call trace: [ 83.144227] dwc3_ep0_handle_feature+0x414/0x43c [ 83.148823] dwc3_ep0_interrupt+0x3b4/0xc94 [ 83.181546] —[ end trace aac6b5267d84c32f ]— 2024-05-21 not yet calculated CVE-2021-47269
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: fix various gadgets null ptr deref on 10gbps cabling. This avoids a null pointer dereference in f_{ecm,eem,hid,loopback,printer,rndis,serial,sourcesink,subset,tcm} by simply reusing the 5gbps config for 10gbps. 2024-05-21 not yet calculated CVE-2021-47270
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: cdnsp: Fix deadlock issue in cdnsp_thread_irq_handler Patch fixes the following critical issue caused by deadlock which has been detected during testing NCM class: smp: csd: Detected non-responsive CSD lock (#1) on CPU#0 smp: csd: CSD lock (#1) unresponsive. …. RIP: 0010:native_queued_spin_lock_slowpath+0x61/0x1d0 RSP: 0018:ffffbc494011cde0 EFLAGS: 00000002 RAX: 0000000000000101 RBX: ffff9ee8116b4a68 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff9ee8116b4658 RBP: ffffbc494011cde0 R08: 0000000000000001 R09: 0000000000000000 R10: ffff9ee8116b4670 R11: 0000000000000000 R12: ffff9ee8116b4658 R13: ffff9ee8116b4670 R14: 0000000000000246 R15: ffff9ee8116b4658 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7bcc41a830 CR3: 000000007a612003 CR4: 00000000001706e0 Call Trace: <IRQ> do_raw_spin_lock+0xc0/0xd0 _raw_spin_lock_irqsave+0x95/0xa0 cdnsp_gadget_ep_queue.cold+0x88/0x107 [cdnsp_udc_pci] usb_ep_queue+0x35/0x110 eth_start_xmit+0x220/0x3d0 [u_ether] ncm_tx_timeout+0x34/0x40 [usb_f_ncm] ? ncm_free_inst+0x50/0x50 [usb_f_ncm] __hrtimer_run_queues+0xac/0x440 hrtimer_run_softirq+0x8c/0xb0 __do_softirq+0xcf/0x428 asm_call_irq_on_stack+0x12/0x20 </IRQ> do_softirq_own_stack+0x61/0x70 irq_exit_rcu+0xc1/0xd0 sysvec_apic_timer_interrupt+0x52/0xb0 asm_sysvec_apic_timer_interrupt+0x12/0x20 RIP: 0010:do_raw_spin_trylock+0x18/0x40 RSP: 0018:ffffbc494138bda8 EFLAGS: 00000246 RAX: 0000000000000000 RBX: ffff9ee8116b4658 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9ee8116b4658 RBP: ffffbc494138bda8 R08: 0000000000000001 R09: 0000000000000000 R10: ffff9ee8116b4670 R11: 0000000000000000 R12: ffff9ee8116b4658 R13: ffff9ee8116b4670 R14: ffff9ee7b5c73d80 R15: ffff9ee8116b4000 _raw_spin_lock+0x3d/0x70 ? cdnsp_thread_irq_handler.cold+0x32/0x112c [cdnsp_udc_pci] cdnsp_thread_irq_handler.cold+0x32/0x112c [cdnsp_udc_pci] ? cdnsp_remove_request+0x1f0/0x1f0 [cdnsp_udc_pci] ? cdnsp_thread_irq_handler+0x5/0xa0 [cdnsp_udc_pci] ? irq_thread+0xa0/0x1c0 irq_thread_fn+0x28/0x60 irq_thread+0x105/0x1c0 ? __kthread_parkme+0x42/0x90 ? irq_forced_thread_fn+0x90/0x90 ? wake_threads_waitq+0x30/0x30 ? irq_thread_check_affinity+0xe0/0xe0 kthread+0x12a/0x160 ? kthread_park+0x90/0x90 ret_from_fork+0x22/0x30 The root cause of issue is spin_lock/spin_unlock instruction instead spin_lock_irqsave/spin_lock_irqrestore in cdnsp_thread_irq_handler function. 2024-05-21 not yet calculated CVE-2021-47271
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: gadget: Bail from dwc3_gadget_exit() if dwc->gadget is NULL There exists a possible scenario in which dwc3_gadget_init() can fail: during during host -> peripheral mode switch in dwc3_set_mode(), and a pending gadget driver fails to bind. Then, if the DRD undergoes another mode switch from peripheral->host the resulting dwc3_gadget_exit() will attempt to reference an invalid and dangling dwc->gadget pointer as well as call dma_free_coherent() on unmapped DMA pointers. The exact scenario can be reproduced as follows: – Start DWC3 in peripheral mode – Configure ConfigFS gadget with FunctionFS instance (or use g_ffs) – Run FunctionFS userspace application (open EPs, write descriptors, etc) – Bind gadget driver to DWC3’s UDC – Switch DWC3 to host mode => dwc3_gadget_exit() is called. usb_del_gadget() will put the ConfigFS driver instance on the gadget_driver_pending_list – Stop FunctionFS application (closes the ep files) – Switch DWC3 to peripheral mode => dwc3_gadget_init() fails as usb_add_gadget() calls check_pending_gadget_drivers() and attempts to rebind the UDC to the ConfigFS gadget but fails with -19 (-ENODEV) because the FFS instance is not in FFS_ACTIVE state (userspace has not re-opened and written the descriptors yet, i.e. desc_ready!=0). – Switch DWC3 back to host mode => dwc3_gadget_exit() is called again, but this time dwc->gadget is invalid. Although it can be argued that userspace should take responsibility for ensuring that the FunctionFS application be ready prior to allowing the composite driver bind to the UDC, failure to do so should not result in a panic from the kernel driver. Fix this by setting dwc->gadget to NULL in the failure path of dwc3_gadget_init() and add a check to dwc3_gadget_exit() to bail out unless the gadget pointer is valid. 2024-05-21 not yet calculated CVE-2021-47272
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3-meson-g12a: fix usb2 PHY glue init when phy0 is disabled When only PHY1 is used (for example on Odroid-HC4), the regmap init code uses the usb2 ports when doesn’t initialize the PHY1 regmap entry. This fixes: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020 … pc : regmap_update_bits_base+0x40/0xa0 lr : dwc3_meson_g12a_usb2_init_phy+0x4c/0xf8 … Call trace: regmap_update_bits_base+0x40/0xa0 dwc3_meson_g12a_usb2_init_phy+0x4c/0xf8 dwc3_meson_g12a_usb2_init+0x7c/0xc8 dwc3_meson_g12a_usb_init+0x28/0x48 dwc3_meson_g12a_probe+0x298/0x540 platform_probe+0x70/0xe0 really_probe+0xf0/0x4d8 driver_probe_device+0xfc/0x168 … 2024-05-21 not yet calculated CVE-2021-47273
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: tracing: Correct the length check which causes memory corruption We’ve suffered from severe kernel crashes due to memory corruption on our production environment, like, Call Trace: [1640542.554277] general protection fault: 0000 [#1] SMP PTI [1640542.554856] CPU: 17 PID: 26996 Comm: python Kdump: loaded Tainted:G [1640542.556629] RIP: 0010:kmem_cache_alloc+0x90/0x190 [1640542.559074] RSP: 0018:ffffb16faa597df8 EFLAGS: 00010286 [1640542.559587] RAX: 0000000000000000 RBX: 0000000000400200 RCX: 0000000006e931bf [1640542.560323] RDX: 0000000006e931be RSI: 0000000000400200 RDI: ffff9a45ff004300 [1640542.560996] RBP: 0000000000400200 R08: 0000000000023420 R09: 0000000000000000 [1640542.561670] R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff9a20608d [1640542.562366] R13: ffff9a45ff004300 R14: ffff9a45ff004300 R15: 696c662f65636976 [1640542.563128] FS: 00007f45d7c6f740(0000) GS:ffff9a45ff840000(0000) knlGS:0000000000000000 [1640542.563937] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [1640542.564557] CR2: 00007f45d71311a0 CR3: 000000189d63e004 CR4: 00000000003606e0 [1640542.565279] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [1640542.566069] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [1640542.566742] Call Trace: [1640542.567009] anon_vma_clone+0x5d/0x170 [1640542.567417] __split_vma+0x91/0x1a0 [1640542.567777] do_munmap+0x2c6/0x320 [1640542.568128] vm_munmap+0x54/0x70 [1640542.569990] __x64_sys_munmap+0x22/0x30 [1640542.572005] do_syscall_64+0x5b/0x1b0 [1640542.573724] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [1640542.575642] RIP: 0033:0x7f45d6e61e27 James Wang has reproduced it stably on the latest 4.19 LTS. After some debugging, we finally proved that it’s due to ftrace buffer out-of-bound access using a debug tool as follows: [ 86.775200] BUG: Out-of-bounds write at addr 0xffff88aefe8b7000 [ 86.780806] no_context+0xdf/0x3c0 [ 86.784327] __do_page_fault+0x252/0x470 [ 86.788367] do_page_fault+0x32/0x140 [ 86.792145] page_fault+0x1e/0x30 [ 86.795576] strncpy_from_unsafe+0x66/0xb0 [ 86.799789] fetch_memory_string+0x25/0x40 [ 86.804002] fetch_deref_string+0x51/0x60 [ 86.808134] kprobe_trace_func+0x32d/0x3a0 [ 86.812347] kprobe_dispatcher+0x45/0x50 [ 86.816385] kprobe_ftrace_handler+0x90/0xf0 [ 86.820779] ftrace_ops_assist_func+0xa1/0x140 [ 86.825340] 0xffffffffc00750bf [ 86.828603] do_sys_open+0x5/0x1f0 [ 86.832124] do_syscall_64+0x5b/0x1b0 [ 86.835900] entry_SYSCALL_64_after_hwframe+0x44/0xa9 commit b220c049d519 (“tracing: Check length before giving out the filter buffer”) adds length check to protect trace data overflow introduced in 0fc1b09ff1ff, seems that this fix can’t prevent overflow entirely, the length check should also take the sizeof entry->array[0] into account, since this array[0] is filled the length of trace data and occupy addtional space and risk overflow. 2024-05-21 not yet calculated CVE-2021-47274
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: bcache: avoid oversized read request in cache missing code path In the cache missing code path of cached device, if a proper location from the internal B+ tree is matched for a cache miss range, function cached_dev_cache_miss() will be called in cache_lookup_fn() in the following code block, [code block 1] 526 unsigned int sectors = KEY_INODE(k) == s->iop.inode 527 ? min_t(uint64_t, INT_MAX, 528 KEY_START(k) – bio->bi_iter.bi_sector) 529 : INT_MAX; 530 int ret = s->d->cache_miss(b, s, bio, sectors); Here s->d->cache_miss() is the call backfunction pointer initialized as cached_dev_cache_miss(), the last parameter ‘sectors’ is an important hint to calculate the size of read request to backing device of the missing cache data. Current calculation in above code block may generate oversized value of ‘sectors’, which consequently may trigger 2 different potential kernel panics by BUG() or BUG_ON() as listed below, 1) BUG_ON() inside bch_btree_insert_key(), [code block 2] 886 BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); 2) BUG() inside biovec_slab(), [code block 3] 51 default: 52 BUG(); 53 return NULL; All the above panics are original from cached_dev_cache_miss() by the oversized parameter ‘sectors’. Inside cached_dev_cache_miss(), parameter ‘sectors’ is used to calculate the size of data read from backing device for the cache missing. This size is stored in s->insert_bio_sectors by the following lines of code, [code block 4] 909 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); Then the actual key inserting to the internal B+ tree is generated and stored in s->iop.replace_key by the following lines of code, [code block 5] 911 s->iop.replace_key = KEY(s->iop.inode, 912 bio->bi_iter.bi_sector + s->insert_bio_sectors, 913 s->insert_bio_sectors); The oversized parameter ‘sectors’ may trigger panic 1) by BUG_ON() from the above code block. And the bio sending to backing device for the missing data is allocated with hint from s->insert_bio_sectors by the following lines of code, [code block 6] 926 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 927 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 928 &dc->disk.bio_split); The oversized parameter ‘sectors’ may trigger panic 2) by BUG() from the agove code block. Now let me explain how the panics happen with the oversized ‘sectors’. In code block 5, replace_key is generated by macro KEY(). From the definition of macro KEY(), [code block 7] 71 #define KEY(inode, offset, size) 72 ((struct bkey) { 73 .high = (1ULL << 63) | ((__u64) (size) << 20) | (inode), 74 .low = (offset) 75 }) Here ‘size’ is 16bits width embedded in 64bits member ‘high’ of struct bkey. But in code block 1, if “KEY_START(k) – bio->bi_iter.bi_sector” is very probably to be larger than (1<<16) – 1, which makes the bkey size calculation in code block 5 is overflowed. In one bug report the value of parameter ‘sectors’ is 131072 (= 1 << 17), the overflowed ‘sectors’ results the overflowed s->insert_bio_sectors in code block 4, then makes size field of s->iop.replace_key to be 0 in code block 5. Then the 0- sized s->iop.replace_key is inserted into the internal B+ tree as cache missing check key (a special key to detect and avoid a racing between normal write request and cache missing read request) as, [code block 8] 915 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); Then the 0-sized s->iop.replace_key as 3rd parameter triggers the bkey size check BUG_ON() in code block 2, and causes the kernel panic 1). Another ke —truncated— 2024-05-21 not yet calculated CVE-2021-47275
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ftrace: Do not blindly read the ip address in ftrace_bug() It was reported that a bug on arm64 caused a bad ip address to be used for updating into a nop in ftrace_init(), but the error path (rightfully) returned -EINVAL and not -EFAULT, as the bug caused more than one error to occur. But because -EINVAL was returned, the ftrace_bug() tried to report what was at the location of the ip address, and read it directly. This caused the machine to panic, as the ip was not pointing to a valid memory address. Instead, read the ip address with copy_from_kernel_nofault() to safely access the memory, and if it faults, report that the address faulted, otherwise report what was in that location. 2024-05-21 not yet calculated CVE-2021-47276
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: kvm: avoid speculation-based attacks from out-of-range memslot accesses KVM’s mechanism for accessing guest memory translates a guest physical address (gpa) to a host virtual address using the right-shifted gpa (also known as gfn) and a struct kvm_memory_slot. The translation is performed in __gfn_to_hva_memslot using the following formula: hva = slot->userspace_addr + (gfn – slot->base_gfn) * PAGE_SIZE It is expected that gfn falls within the boundaries of the guest’s physical memory. However, a guest can access invalid physical addresses in such a way that the gfn is invalid. __gfn_to_hva_memslot is called from kvm_vcpu_gfn_to_hva_prot, which first retrieves a memslot through __gfn_to_memslot. While __gfn_to_memslot does check that the gfn falls within the boundaries of the guest’s physical memory or not, a CPU can speculate the result of the check and continue execution speculatively using an illegal gfn. The speculation can result in calculating an out-of-bounds hva. If the resulting host virtual address is used to load another guest physical address, this is effectively a Spectre gadget consisting of two consecutive reads, the second of which is data dependent on the first. Right now it’s not clear if there are any cases in which this is exploitable. One interesting case was reported by the original author of this patch, and involves visiting guest page tables on x86. Right now these are not vulnerable because the hva read goes through get_user(), which contains an LFENCE speculation barrier. However, there are patches in progress for x86 uaccess.h to mask kernel addresses instead of using LFENCE; once these land, a guest could use speculation to read from the VMM’s ring 3 address space. Other architectures such as ARM already use the address masking method, and would be susceptible to this same kind of data-dependent access gadgets. Therefore, this patch proactively protects from these attacks by masking out-of-bounds gfns in __gfn_to_hva_memslot, which blocks speculation of invalid hvas. Sean Christopherson noted that this patch does not cover kvm_read_guest_offset_cached. This however is limited to a few bytes past the end of the cache, and therefore it is unlikely to be useful in the context of building a chain of data dependent accesses. 2024-05-21 not yet calculated CVE-2021-47277
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: pci_generic: Fix possible use-after-free in mhi_pci_remove() This driver’s remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver’s remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself. 2024-05-21 not yet calculated CVE-2021-47278
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: misc: brcmstb-usb-pinmap: check return value after calling platform_get_resource() It will cause null-ptr-deref if platform_get_resource() returns NULL, we need check the return value. 2024-05-21 not yet calculated CVE-2021-47279
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm: Fix use-after-free read in drm_getunique() There is a time-of-check-to-time-of-use error in drm_getunique() due to retrieving file_priv->master prior to locking the device’s master mutex. An example can be seen in the crash report of the use-after-free error found by Syzbot: https://syzkaller.appspot.com/bug?id=148d2f1dfac64af52ffd27b661981a540724f803 In the report, the master pointer was used after being freed. This is because another process had acquired the device’s master mutex in drm_setmaster_ioctl(), then overwrote fpriv->master in drm_new_set_master(). The old value of fpriv->master was subsequently freed before the mutex was unlocked. To fix this, we lock the device’s master mutex before retrieving the pointer from from fpriv->master. This patch passes the Syzbot reproducer test. 2024-05-21 not yet calculated CVE-2021-47280
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ALSA: seq: Fix race of snd_seq_timer_open() The timer instance per queue is exclusive, and snd_seq_timer_open() should have managed the concurrent accesses. It looks as if it’s checking the already existing timer instance at the beginning, but it’s not right, because there is no protection, hence any later concurrent call of snd_seq_timer_open() may override the timer instance easily. This may result in UAF, as the leftover timer instance can keep running while the queue itself gets closed, as spotted by syzkaller recently. For avoiding the race, add a proper check at the assignment of tmr->timeri again, and return -EBUSY if it’s been already registered. 2024-05-21 not yet calculated CVE-2021-47281
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: spi: bcm2835: Fix out-of-bounds access with more than 4 slaves Commit 571e31fa60b3 (“spi: bcm2835: Cache CS register value for ->prepare_message()”) limited the number of slaves to 3 at compile-time. The limitation was necessitated by a statically-sized array prepare_cs[] in the driver private data which contains a per-slave register value. The commit sought to enforce the limitation at run-time by setting the controller’s num_chipselect to 3: Slaves with a higher chipselect are rejected by spi_add_device(). However the commit neglected that num_chipselect only limits the number of *native* chipselects. If GPIO chipselects are specified in the device tree for more than 3 slaves, num_chipselect is silently raised by of_spi_get_gpio_numbers() and the result are out-of-bounds accesses to the statically-sized array prepare_cs[]. As a bandaid fix which is backportable to stable, raise the number of allowed slaves to 24 (which “ought to be enough for anybody”), enforce the limitation on slave ->setup and revert num_chipselect to 3 (which is the number of native chipselects supported by the controller). An upcoming for-next commit will allow an arbitrary number of slaves. 2024-05-21 not yet calculated CVE-2021-47282
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net:sfc: fix non-freed irq in legacy irq mode SFC driver can be configured via modparam to work using MSI-X, MSI or legacy IRQ interrupts. In the last one, the interrupt was not properly released on module remove. It was not freed because the flag irqs_hooked was not set during initialization in the case of using legacy IRQ. Example of (trimmed) trace during module remove without this fix: remove_proc_entry: removing non-empty directory ‘irq/125’, leaking at least ‘0000:3b:00.1’ WARNING: CPU: 39 PID: 3658 at fs/proc/generic.c:715 remove_proc_entry+0x15c/0x170 …trimmed… Call Trace: unregister_irq_proc+0xe3/0x100 free_desc+0x29/0x70 irq_free_descs+0x47/0x70 mp_unmap_irq+0x58/0x60 acpi_unregister_gsi_ioapic+0x2a/0x40 acpi_pci_irq_disable+0x78/0xb0 pci_disable_device+0xd1/0x100 efx_pci_remove+0xa1/0x1e0 [sfc] pci_device_remove+0x38/0xa0 __device_release_driver+0x177/0x230 driver_detach+0xcb/0x110 bus_remove_driver+0x58/0xd0 pci_unregister_driver+0x2a/0xb0 efx_exit_module+0x24/0xf40 [sfc] __do_sys_delete_module.constprop.0+0x171/0x280 ? exit_to_user_mode_prepare+0x83/0x1d0 do_syscall_64+0x3d/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f9f9385800b …trimmed… 2024-05-21 not yet calculated CVE-2021-47283
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: isdn: mISDN: netjet: Fix crash in nj_probe: ‘nj_setup’ in netjet.c might fail with -EIO and in this case ‘card->irq’ is initialized and is bigger than zero. A subsequent call to ‘nj_release’ will free the irq that has not been requested. Fix this bug by deleting the previous assignment to ‘card->irq’ and just keep the assignment before ‘request_irq’. The KASAN’s log reveals it: [ 3.354615 ] WARNING: CPU: 0 PID: 1 at kernel/irq/manage.c:1826 free_irq+0x100/0x480 [ 3.355112 ] Modules linked in: [ 3.355310 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.13.0-rc1-00144-g25a1298726e #13 [ 3.355816 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 3.356552 ] RIP: 0010:free_irq+0x100/0x480 [ 3.356820 ] Code: 6e 08 74 6f 4d 89 f4 e8 5e ac 09 00 4d 8b 74 24 18 4d 85 f6 75 e3 e8 4f ac 09 00 8b 75 c8 48 c7 c7 78 c1 2e 85 e8 e0 cf f5 ff <0f> 0b 48 8b 75 c0 4c 89 ff e8 72 33 0b 03 48 8b 43 40 4c 8b a0 80 [ 3.358012 ] RSP: 0000:ffffc90000017b48 EFLAGS: 00010082 [ 3.358357 ] RAX: 0000000000000000 RBX: ffff888104dc8000 RCX: 0000000000000000 [ 3.358814 ] RDX: ffff8881003c8000 RSI: ffffffff8124a9e6 RDI: 00000000ffffffff [ 3.359272 ] RBP: ffffc90000017b88 R08: 0000000000000000 R09: 0000000000000000 [ 3.359732 ] R10: ffffc900000179f0 R11: 0000000000001d04 R12: 0000000000000000 [ 3.360195 ] R13: ffff888107dc6000 R14: ffff888107dc6928 R15: ffff888104dc80a8 [ 3.360652 ] FS: 0000000000000000(0000) GS:ffff88817bc00000(0000) knlGS:0000000000000000 [ 3.361170 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3.361538 ] CR2: 0000000000000000 CR3: 000000000582e000 CR4: 00000000000006f0 [ 3.362003 ] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 3.362175 ] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 3.362175 ] Call Trace: [ 3.362175 ] nj_release+0x51/0x1e0 [ 3.362175 ] nj_probe+0x450/0x950 [ 3.362175 ] ? pci_device_remove+0x110/0x110 [ 3.362175 ] local_pci_probe+0x45/0xa0 [ 3.362175 ] pci_device_probe+0x12b/0x1d0 [ 3.362175 ] really_probe+0x2a9/0x610 [ 3.362175 ] driver_probe_device+0x90/0x1d0 [ 3.362175 ] ? mutex_lock_nested+0x1b/0x20 [ 3.362175 ] device_driver_attach+0x68/0x70 [ 3.362175 ] __driver_attach+0x124/0x1b0 [ 3.362175 ] ? device_driver_attach+0x70/0x70 [ 3.362175 ] bus_for_each_dev+0xbb/0x110 [ 3.362175 ] ? rdinit_setup+0x45/0x45 [ 3.362175 ] driver_attach+0x27/0x30 [ 3.362175 ] bus_add_driver+0x1eb/0x2a0 [ 3.362175 ] driver_register+0xa9/0x180 [ 3.362175 ] __pci_register_driver+0x82/0x90 [ 3.362175 ] ? w6692_init+0x38/0x38 [ 3.362175 ] nj_init+0x36/0x38 [ 3.362175 ] do_one_initcall+0x7f/0x3d0 [ 3.362175 ] ? rdinit_setup+0x45/0x45 [ 3.362175 ] ? rcu_read_lock_sched_held+0x4f/0x80 [ 3.362175 ] kernel_init_freeable+0x2aa/0x301 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] kernel_init+0x18/0x190 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] ret_from_fork+0x1f/0x30 [ 3.362175 ] Kernel panic – not syncing: panic_on_warn set … [ 3.362175 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.13.0-rc1-00144-g25a1298726e #13 [ 3.362175 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 3.362175 ] Call Trace: [ 3.362175 ] dump_stack+0xba/0xf5 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] panic+0x15a/0x3f2 [ 3.362175 ] ? __warn+0xf2/0x150 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] __warn+0x108/0x150 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] report_bug+0x119/0x1c0 [ 3.362175 ] handle_bug+0x3b/0x80 [ 3.362175 ] exc_invalid_op+0x18/0x70 [ 3.362175 ] asm_exc_invalid_op+0x12/0x20 [ 3.362175 ] RIP: 0010:free_irq+0x100 —truncated— 2024-05-21 not yet calculated CVE-2021-47284
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net/nfc/rawsock.c: fix a permission check bug The function rawsock_create() calls a privileged function sk_alloc(), which requires a ns-aware check to check net->user_ns, i.e., ns_capable(). However, the original code checks the init_user_ns using capable(). So we replace the capable() with ns_capable(). 2024-05-21 not yet calculated CVE-2021-47285
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: core: Validate channel ID when processing command completions MHI reads the channel ID from the event ring element sent by the device which can be any value between 0 and 255. In order to prevent any out of bound accesses, add a check against the maximum number of channels supported by the controller and those channels not configured yet so as to skip processing of that event ring element. 2024-05-21 not yet calculated CVE-2021-47286
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: driver core: auxiliary bus: Fix memory leak when driver_register() fail If driver_register() returns with error we need to free the memory allocated for auxdrv->driver.name before returning from __auxiliary_driver_register() 2024-05-21 not yet calculated CVE-2021-47287
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: media: ngene: Fix out-of-bounds bug in ngene_command_config_free_buf() Fix an 11-year old bug in ngene_command_config_free_buf() while addressing the following warnings caught with -Warray-bounds: arch/alpha/include/asm/string.h:22:16: warning: ‘__builtin_memcpy’ offset [12, 16] from the object at ‘com’ is out of the bounds of referenced subobject ‘config’ with type ‘unsigned char’ at offset 10 [-Warray-bounds] arch/x86/include/asm/string_32.h:182:25: warning: ‘__builtin_memcpy’ offset [12, 16] from the object at ‘com’ is out of the bounds of referenced subobject ‘config’ with type ‘unsigned char’ at offset 10 [-Warray-bounds] The problem is that the original code is trying to copy 6 bytes of data into a one-byte size member _config_ of the wrong structue FW_CONFIGURE_BUFFERS, in a single call to memcpy(). This causes a legitimate compiler warning because memcpy() overruns the length of &com.cmd.ConfigureBuffers.config. It seems that the right structure is FW_CONFIGURE_FREE_BUFFERS, instead, because it contains 6 more members apart from the header _hdr_. Also, the name of the function ngene_command_config_free_buf() suggests that the actual intention is to ConfigureFreeBuffers, instead of ConfigureBuffers (which takes place in the function ngene_command_config_buf(), above). Fix this by enclosing those 6 members of struct FW_CONFIGURE_FREE_BUFFERS into new struct config, and use &com.cmd.ConfigureFreeBuffers.config as the destination address, instead of &com.cmd.ConfigureBuffers.config, when calling memcpy(). This also helps with the ongoing efforts to globally enable -Warray-bounds and get us closer to being able to tighten the FORTIFY_SOURCE routines on memcpy(). 2024-05-21 not yet calculated CVE-2021-47288
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ACPI: fix NULL pointer dereference Commit 71f642833284 (“ACPI: utils: Fix reference counting in for_each_acpi_dev_match()”) started doing “acpi_dev_put()” on a pointer that was possibly NULL. That fails miserably, because that helper inline function is not set up to handle that case. Just make acpi_dev_put() silently accept a NULL pointer, rather than calling down to put_device() with an invalid offset off that NULL pointer. 2024-05-21 not yet calculated CVE-2021-47289
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: scsi: target: Fix NULL dereference on XCOPY completion CPU affinity control added with commit 39ae3edda325 (“scsi: target: core: Make completion affinity configurable”) makes target_complete_cmd() queue work on a CPU based on se_tpg->se_tpg_wwn->cmd_compl_affinity state. LIO’s EXTENDED COPY worker is a special case in that read/write cmds are dispatched using the global xcopy_pt_tpg, which carries a NULL se_tpg_wwn pointer following initialization in target_xcopy_setup_pt(). The NULL xcopy_pt_tpg->se_tpg_wwn pointer is dereferenced on completion of any EXTENDED COPY initiated read/write cmds. E.g using the libiscsi SCSI.ExtendedCopy.Simple test: BUG: kernel NULL pointer dereference, address: 00000000000001a8 RIP: 0010:target_complete_cmd+0x9d/0x130 [target_core_mod] Call Trace: fd_execute_rw+0x148/0x42a [target_core_file] ? __dynamic_pr_debug+0xa7/0xe0 ? target_check_reservation+0x5b/0x940 [target_core_mod] __target_execute_cmd+0x1e/0x90 [target_core_mod] transport_generic_new_cmd+0x17c/0x330 [target_core_mod] target_xcopy_issue_pt_cmd+0x9/0x60 [target_core_mod] target_xcopy_read_source.isra.7+0x10b/0x1b0 [target_core_mod] ? target_check_fua+0x40/0x40 [target_core_mod] ? transport_complete_task_attr+0x130/0x130 [target_core_mod] target_xcopy_do_work+0x61f/0xc00 [target_core_mod] This fix makes target_complete_cmd() queue work on se_cmd->cpuid if se_tpg_wwn is NULL. 2024-05-21 not yet calculated CVE-2021-47290
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix another slab-out-of-bounds in fib6_nh_flush_exceptions While running the self-tests on a KASAN enabled kernel, I observed a slab-out-of-bounds splat very similar to the one reported in commit 821bbf79fe46 (“ipv6: Fix KASAN: slab-out-of-bounds Read in fib6_nh_flush_exceptions”). We additionally need to take care of fib6_metrics initialization failure when the caller provides an nh. The fix is similar, explicitly free the route instead of calling fib6_info_release on a half-initialized object. 2024-05-21 not yet calculated CVE-2021-47291
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix memleak in io_init_wq_offload() I got memory leak report when doing fuzz test: BUG: memory leak unreferenced object 0xffff888107310a80 (size 96): comm “syz-executor.6”, pid 4610, jiffies 4295140240 (age 20.135s) hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ……………. 00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 …..N………. backtrace: [<000000001974933b>] kmalloc include/linux/slab.h:591 [inline] [<000000001974933b>] kzalloc include/linux/slab.h:721 [inline] [<000000001974933b>] io_init_wq_offload fs/io_uring.c:7920 [inline] [<000000001974933b>] io_uring_alloc_task_context+0x466/0x640 fs/io_uring.c:7955 [<0000000039d0800d>] __io_uring_add_tctx_node+0x256/0x360 fs/io_uring.c:9016 [<000000008482e78c>] io_uring_add_tctx_node fs/io_uring.c:9052 [inline] [<000000008482e78c>] __do_sys_io_uring_enter fs/io_uring.c:9354 [inline] [<000000008482e78c>] __se_sys_io_uring_enter fs/io_uring.c:9301 [inline] [<000000008482e78c>] __x64_sys_io_uring_enter+0xabc/0xc20 fs/io_uring.c:9301 [<00000000b875f18f>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<00000000b875f18f>] do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80 [<000000006b0a8484>] entry_SYSCALL_64_after_hwframe+0x44/0xae CPU0 CPU1 io_uring_enter io_uring_enter io_uring_add_tctx_node io_uring_add_tctx_node __io_uring_add_tctx_node __io_uring_add_tctx_node io_uring_alloc_task_context io_uring_alloc_task_context io_init_wq_offload io_init_wq_offload hash = kzalloc hash = kzalloc ctx->hash_map = hash ctx->hash_map = hash <- one of the hash is leaked When calling io_uring_enter() in parallel, the ‘hash_map’ will be leaked, add uring_lock to protect ‘hash_map’. 2024-05-21 not yet calculated CVE-2021-47292
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net/sched: act_skbmod: Skip non-Ethernet packets Currently tcf_skbmod_act() assumes that packets use Ethernet as their L2 protocol, which is not always the case. As an example, for CAN devices: $ ip link add dev vcan0 type vcan $ ip link set up vcan0 $ tc qdisc add dev vcan0 root handle 1: htb $ tc filter add dev vcan0 parent 1: protocol ip prio 10 matchall action skbmod swap mac Doing the above silently corrupts all the packets. Do not perform skbmod actions for non-Ethernet packets. 2024-05-21 not yet calculated CVE-2021-47293
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: netrom: Decrease sock refcount when sock timers expire Commit 63346650c1a9 (“netrom: switch to sock timer API”) switched to use sock timer API. It replaces mod_timer() by sk_reset_timer(), and del_timer() by sk_stop_timer(). Function sk_reset_timer() will increase the refcount of sock if it is called on an inactive timer, hence, in case the timer expires, we need to decrease the refcount ourselves in the handler, otherwise, the sock refcount will be unbalanced and the sock will never be freed. 2024-05-21 not yet calculated CVE-2021-47294
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: sched: fix memory leak in tcindex_partial_destroy_work Syzbot reported memory leak in tcindex_set_parms(). The problem was in non-freed perfect hash in tcindex_partial_destroy_work(). In tcindex_set_parms() new tcindex_data is allocated and some fields from old one are copied to new one, but not the perfect hash. Since tcindex_partial_destroy_work() is the destroy function for old tcindex_data, we need to free perfect hash to avoid memory leak. 2024-05-21 not yet calculated CVE-2021-47295
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: KVM: PPC: Fix kvm_arch_vcpu_ioctl vcpu_load leak vcpu_put is not called if the user copy fails. This can result in preempt notifier corruption and crashes, among other issues. 2024-05-21 not yet calculated CVE-2021-47296
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: fix uninit-value in caif_seqpkt_sendmsg When nr_segs equal to zero in iovec_from_user, the object msg->msg_iter.iov is uninit stack memory in caif_seqpkt_sendmsg which is defined in ___sys_sendmsg. So we cann’t just judge msg->msg_iter.iov->base directlly. We can use nr_segs to judge msg in caif_seqpkt_sendmsg whether has data buffers. ===================================================== BUG: KMSAN: uninit-value in caif_seqpkt_sendmsg+0x693/0xf60 net/caif/caif_socket.c:542 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x220 lib/dump_stack.c:118 kmsan_report+0xf7/0x1e0 mm/kmsan/kmsan_report.c:118 __msan_warning+0x58/0xa0 mm/kmsan/kmsan_instr.c:215 caif_seqpkt_sendmsg+0x693/0xf60 net/caif/caif_socket.c:542 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg net/socket.c:672 [inline] ____sys_sendmsg+0x12b6/0x1350 net/socket.c:2343 ___sys_sendmsg net/socket.c:2397 [inline] __sys_sendmmsg+0x808/0xc90 net/socket.c:2480 __compat_sys_sendmmsg net/compat.c:656 [inline] 2024-05-21 not yet calculated CVE-2021-47297
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix potential memory leak on unlikely error case If skb_linearize is needed and fails we could leak a msg on the error handling. To fix ensure we kfree the msg block before returning error. Found during code review. 2024-05-21 not yet calculated CVE-2021-47298
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: xdp, net: Fix use-after-free in bpf_xdp_link_release The problem occurs between dev_get_by_index() and dev_xdp_attach_link(). At this point, dev_xdp_uninstall() is called. Then xdp link will not be detached automatically when dev is released. But link->dev already points to dev, when xdp link is released, dev will still be accessed, but dev has been released. dev_get_by_index() | link->dev = dev | | rtnl_lock() | unregister_netdevice_many() | dev_xdp_uninstall() | rtnl_unlock() rtnl_lock(); | dev_xdp_attach_link() | rtnl_unlock(); | | netdev_run_todo() // dev released bpf_xdp_link_release() | /* access dev. | use-after-free */ | [ 45.966867] BUG: KASAN: use-after-free in bpf_xdp_link_release+0x3b8/0x3d0 [ 45.967619] Read of size 8 at addr ffff00000f9980c8 by task a.out/732 [ 45.968297] [ 45.968502] CPU: 1 PID: 732 Comm: a.out Not tainted 5.13.0+ #22 [ 45.969222] Hardware name: linux,dummy-virt (DT) [ 45.969795] Call trace: [ 45.970106] dump_backtrace+0x0/0x4c8 [ 45.970564] show_stack+0x30/0x40 [ 45.970981] dump_stack_lvl+0x120/0x18c [ 45.971470] print_address_description.constprop.0+0x74/0x30c [ 45.972182] kasan_report+0x1e8/0x200 [ 45.972659] __asan_report_load8_noabort+0x2c/0x50 [ 45.973273] bpf_xdp_link_release+0x3b8/0x3d0 [ 45.973834] bpf_link_free+0xd0/0x188 [ 45.974315] bpf_link_put+0x1d0/0x218 [ 45.974790] bpf_link_release+0x3c/0x58 [ 45.975291] __fput+0x20c/0x7e8 [ 45.975706] ____fput+0x24/0x30 [ 45.976117] task_work_run+0x104/0x258 [ 45.976609] do_notify_resume+0x894/0xaf8 [ 45.977121] work_pending+0xc/0x328 [ 45.977575] [ 45.977775] The buggy address belongs to the page: [ 45.978369] page:fffffc00003e6600 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x4f998 [ 45.979522] flags: 0x7fffe0000000000(node=0|zone=0|lastcpupid=0x3ffff) [ 45.980349] raw: 07fffe0000000000 fffffc00003e6708 ffff0000dac3c010 0000000000000000 [ 45.981309] raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000 [ 45.982259] page dumped because: kasan: bad access detected [ 45.982948] [ 45.983153] Memory state around the buggy address: [ 45.983753] ffff00000f997f80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 45.984645] ffff00000f998000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 45.985533] >ffff00000f998080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 45.986419] ^ [ 45.987112] ffff00000f998100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 45.988006] ffff00000f998180: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff [ 45.988895] ================================================================== [ 45.989773] Disabling lock debugging due to kernel taint [ 45.990552] Kernel panic – not syncing: panic_on_warn set … [ 45.991166] CPU: 1 PID: 732 Comm: a.out Tainted: G B 5.13.0+ #22 [ 45.991929] Hardware name: linux,dummy-virt (DT) [ 45.992448] Call trace: [ 45.992753] dump_backtrace+0x0/0x4c8 [ 45.993208] show_stack+0x30/0x40 [ 45.993627] dump_stack_lvl+0x120/0x18c [ 45.994113] dump_stack+0x1c/0x34 [ 45.994530] panic+0x3a4/0x7d8 [ 45.994930] end_report+0x194/0x198 [ 45.995380] kasan_report+0x134/0x200 [ 45.995850] __asan_report_load8_noabort+0x2c/0x50 [ 45.996453] bpf_xdp_link_release+0x3b8/0x3d0 [ 45.997007] bpf_link_free+0xd0/0x188 [ 45.997474] bpf_link_put+0x1d0/0x218 [ 45.997942] bpf_link_release+0x3c/0x58 [ 45.998429] __fput+0x20c/0x7e8 [ 45.998833] ____fput+0x24/0x30 [ 45.999247] task_work_run+0x104/0x258 [ 45.999731] do_notify_resume+0x894/0xaf8 [ 46.000236] work_pending —truncated— 2024-05-21 not yet calculated CVE-2021-47299
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix tail_call_reachable rejection for interpreter when jit failed During testing of f263a81451c1 (“bpf: Track subprog poke descriptors correctly and fix use-after-free”) under various failure conditions, for example, when jit_subprogs() fails and tries to clean up the program to be run under the interpreter, we ran into the following freeze: […] #127/8 tailcall_bpf2bpf_3:FAIL […] [ 92.041251] BUG: KASAN: slab-out-of-bounds in ___bpf_prog_run+0x1b9d/0x2e20 [ 92.042408] Read of size 8 at addr ffff88800da67f68 by task test_progs/682 [ 92.043707] [ 92.044030] CPU: 1 PID: 682 Comm: test_progs Tainted: G O 5.13.0-53301-ge6c08cb33a30-dirty #87 [ 92.045542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 [ 92.046785] Call Trace: [ 92.047171] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.047773] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.048389] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.049019] ? ktime_get+0x117/0x130 […] // few hundred [similar] lines more [ 92.659025] ? ktime_get+0x117/0x130 [ 92.659845] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.660738] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.661528] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.662378] ? print_usage_bug+0x50/0x50 [ 92.663221] ? print_usage_bug+0x50/0x50 [ 92.664077] ? bpf_ksym_find+0x9c/0xe0 [ 92.664887] ? ktime_get+0x117/0x130 [ 92.665624] ? kernel_text_address+0xf5/0x100 [ 92.666529] ? __kernel_text_address+0xe/0x30 [ 92.667725] ? unwind_get_return_address+0x2f/0x50 [ 92.668854] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.670185] ? ktime_get+0x117/0x130 [ 92.671130] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.672020] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.672860] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.675159] ? ktime_get+0x117/0x130 [ 92.677074] ? lock_is_held_type+0xd5/0x130 [ 92.678662] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.680046] ? ktime_get+0x117/0x130 [ 92.681285] ? __bpf_prog_run32+0x6b/0x90 [ 92.682601] ? __bpf_prog_run64+0x90/0x90 [ 92.683636] ? lock_downgrade+0x370/0x370 [ 92.684647] ? mark_held_locks+0x44/0x90 [ 92.685652] ? ktime_get+0x117/0x130 [ 92.686752] ? lockdep_hardirqs_on+0x79/0x100 [ 92.688004] ? ktime_get+0x117/0x130 [ 92.688573] ? __cant_migrate+0x2b/0x80 [ 92.689192] ? bpf_test_run+0x2f4/0x510 [ 92.689869] ? bpf_test_timer_continue+0x1c0/0x1c0 [ 92.690856] ? rcu_read_lock_bh_held+0x90/0x90 [ 92.691506] ? __kasan_slab_alloc+0x61/0x80 [ 92.692128] ? eth_type_trans+0x128/0x240 [ 92.692737] ? __build_skb+0x46/0x50 [ 92.693252] ? bpf_prog_test_run_skb+0x65e/0xc50 [ 92.693954] ? bpf_prog_test_run_raw_tp+0x2d0/0x2d0 [ 92.694639] ? __fget_light+0xa1/0x100 [ 92.695162] ? bpf_prog_inc+0x23/0x30 [ 92.695685] ? __sys_bpf+0xb40/0x2c80 [ 92.696324] ? bpf_link_get_from_fd+0x90/0x90 [ 92.697150] ? mark_held_locks+0x24/0x90 [ 92.698007] ? lockdep_hardirqs_on_prepare+0x124/0x220 [ 92.699045] ? finish_task_switch+0xe6/0x370 [ 92.700072] ? lockdep_hardirqs_on+0x79/0x100 [ 92.701233] ? finish_task_switch+0x11d/0x370 [ 92.702264] ? __switch_to+0x2c0/0x740 [ 92.703148] ? mark_held_locks+0x24/0x90 [ 92.704155] ? __x64_sys_bpf+0x45/0x50 [ 92.705146] ? do_syscall_64+0x35/0x80 [ 92.706953] ? entry_SYSCALL_64_after_hwframe+0x44/0xae […] Turns out that the program rejection from e411901c0b77 (“bpf: allow for tailcalls in BPF subprograms for x64 JIT”) is buggy since env->prog->aux->tail_call_reachable is never true. Commit ebf7d1f508a7 (“bpf, x64: rework pro/epilogue and tailcall handling in JIT”) added a tracker into check_max_stack_depth() which propagates the tail_call_reachable condition throughout the subprograms. This info is then assigned to the subprogram’s —truncated— 2024-05-21 not yet calculated CVE-2021-47300
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: igb: Fix use-after-free error during reset Cleans the next descriptor to watch (next_to_watch) when cleaning the TX ring. Failure to do so can cause invalid memory accesses. If igb_poll() runs while the controller is reset this can lead to the driver try to free a skb that was already freed. (The crash is harder to reproduce with the igb driver, but the same potential problem exists as the code is identical to igc) 2024-05-21 not yet calculated CVE-2021-47301
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: igc: Fix use-after-free error during reset Cleans the next descriptor to watch (next_to_watch) when cleaning the TX ring. Failure to do so can cause invalid memory accesses. If igc_poll() runs while the controller is being reset this can lead to the driver try to free a skb that was already freed. Log message: [ 101.525242] refcount_t: underflow; use-after-free. [ 101.525251] WARNING: CPU: 1 PID: 646 at lib/refcount.c:28 refcount_warn_saturate+0xab/0xf0 [ 101.525259] Modules linked in: sch_etf(E) sch_mqprio(E) rfkill(E) intel_rapl_msr(E) intel_rapl_common(E) x86_pkg_temp_thermal(E) intel_powerclamp(E) coretemp(E) binfmt_misc(E) kvm_intel(E) kvm(E) irqbypass(E) crc32_pclmul(E) ghash_clmulni_intel(E) aesni_intel(E) mei_wdt(E) libaes(E) crypto_simd(E) cryptd(E) glue_helper(E) snd_hda_codec_hdmi(E) rapl(E) intel_cstate(E) snd_hda_intel(E) snd_intel_dspcfg(E) sg(E) soundwire_intel(E) intel_uncore(E) at24(E) soundwire_generic_allocation(E) iTCO_wdt(E) soundwire_cadence(E) intel_pmc_bxt(E) serio_raw(E) snd_hda_codec(E) iTCO_vendor_support(E) watchdog(E) snd_hda_core(E) snd_hwdep(E) snd_soc_core(E) snd_compress(E) snd_pcsp(E) soundwire_bus(E) snd_pcm(E) evdev(E) snd_timer(E) mei_me(E) snd(E) soundcore(E) mei(E) configfs(E) ip_tables(E) x_tables(E) autofs4(E) ext4(E) crc32c_generic(E) crc16(E) mbcache(E) jbd2(E) sd_mod(E) t10_pi(E) crc_t10dif(E) crct10dif_generic(E) i915(E) ahci(E) libahci(E) ehci_pci(E) igb(E) xhci_pci(E) ehci_hcd(E) [ 101.525303] drm_kms_helper(E) dca(E) xhci_hcd(E) libata(E) crct10dif_pclmul(E) cec(E) crct10dif_common(E) tsn(E) igc(E) e1000e(E) ptp(E) i2c_i801(E) crc32c_intel(E) psmouse(E) i2c_algo_bit(E) i2c_smbus(E) scsi_mod(E) lpc_ich(E) pps_core(E) usbcore(E) drm(E) button(E) video(E) [ 101.525318] CPU: 1 PID: 646 Comm: irq/37-enp7s0-T Tainted: G E 5.10.30-rt37-tsn1-rt-ipipe #ipipe [ 101.525320] Hardware name: SIEMENS AG SIMATIC IPC427D/A5E31233588, BIOS V17.02.09 03/31/2017 [ 101.525322] RIP: 0010:refcount_warn_saturate+0xab/0xf0 [ 101.525325] Code: 05 31 48 44 01 01 e8 f0 c6 42 00 0f 0b c3 80 3d 1f 48 44 01 00 75 90 48 c7 c7 78 a8 f3 a6 c6 05 0f 48 44 01 01 e8 d1 c6 42 00 <0f> 0b c3 80 3d fe 47 44 01 00 0f 85 6d ff ff ff 48 c7 c7 d0 a8 f3 [ 101.525327] RSP: 0018:ffffbdedc0917cb8 EFLAGS: 00010286 [ 101.525329] RAX: 0000000000000000 RBX: ffff98fd6becbf40 RCX: 0000000000000001 [ 101.525330] RDX: 0000000000000001 RSI: ffffffffa6f2700c RDI: 00000000ffffffff [ 101.525332] RBP: ffff98fd6becc14c R08: ffffffffa7463d00 R09: ffffbdedc0917c50 [ 101.525333] R10: ffffffffa74c3578 R11: 0000000000000034 R12: 00000000ffffff00 [ 101.525335] R13: ffff98fd6b0b1000 R14: 0000000000000039 R15: ffff98fd6be35c40 [ 101.525337] FS: 0000000000000000(0000) GS:ffff98fd6e240000(0000) knlGS:0000000000000000 [ 101.525339] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 101.525341] CR2: 00007f34135a3a70 CR3: 0000000150210003 CR4: 00000000001706e0 [ 101.525343] Call Trace: [ 101.525346] sock_wfree+0x9c/0xa0 [ 101.525353] unix_destruct_scm+0x7b/0xa0 [ 101.525358] skb_release_head_state+0x40/0x90 [ 101.525362] skb_release_all+0xe/0x30 [ 101.525364] napi_consume_skb+0x57/0x160 [ 101.525367] igc_poll+0xb7/0xc80 [igc] [ 101.525376] ? sched_clock+0x5/0x10 [ 101.525381] ? sched_clock_cpu+0xe/0x100 [ 101.525385] net_rx_action+0x14c/0x410 [ 101.525388] __do_softirq+0xe9/0x2f4 [ 101.525391] __local_bh_enable_ip+0xe3/0x110 [ 101.525395] ? irq_finalize_oneshot.part.47+0xe0/0xe0 [ 101.525398] irq_forced_thread_fn+0x6a/0x80 [ 101.525401] irq_thread+0xe8/0x180 [ 101.525403] ? wake_threads_waitq+0x30/0x30 [ 101.525406] ? irq_thread_check_affinity+0xd0/0xd0 [ 101.525408] kthread+0x183/0x1a0 [ 101.525412] ? kthread_park+0x80/0x80 [ 101.525415] ret_from_fork+0x22/0x30 2024-05-21 not yet calculated CVE-2021-47302
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: bpf: Track subprog poke descriptors correctly and fix use-after-free Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free’d memory, triggering KASAN in prog_array_map_poke_run(): […] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 […] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; […] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { […] /* — cacheline 5 boundary (320 bytes) — */ u32 size_poke_tab; /* 320 4 */ […] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don’t try to double free the poke_tab when free’ing the subprog structures. This is easily solved by NULL’ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, a748c6975dea3 (“bpf: propagate poke des —truncated— 2024-05-21 not yet calculated CVE-2021-47303
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: tcp: fix tcp_init_transfer() to not reset icsk_ca_initialized This commit fixes a bug (found by syzkaller) that could cause spurious double-initializations for congestion control modules, which could cause memory leaks or other problems for congestion control modules (like CDG) that allocate memory in their init functions. The buggy scenario constructed by syzkaller was something like: (1) create a TCP socket (2) initiate a TFO connect via sendto() (3) while socket is in TCP_SYN_SENT, call setsockopt(TCP_CONGESTION), which calls: tcp_set_congestion_control() -> tcp_reinit_congestion_control() -> tcp_init_congestion_control() (4) receive ACK, connection is established, call tcp_init_transfer(), set icsk_ca_initialized=0 (without first calling cc->release()), call tcp_init_congestion_control() again. Note that in this sequence tcp_init_congestion_control() is called twice without a cc->release() call in between. Thus, for CC modules that allocate memory in their init() function, e.g, CDG, a memory leak may occur. The syzkaller tool managed to find a reproducer that triggered such a leak in CDG. The bug was introduced when that commit 8919a9b31eb4 (“tcp: Only init congestion control if not initialized already”) introduced icsk_ca_initialized and set icsk_ca_initialized to 0 in tcp_init_transfer(), missing the possibility for a sequence like the one above, where a process could call setsockopt(TCP_CONGESTION) in state TCP_SYN_SENT (i.e. after the connect() or TFO open sendmsg()), which would call tcp_init_congestion_control(). It did not intend to reset any initialization that the user had already explicitly made; it just missed the possibility of that particular sequence (which syzkaller managed to find). 2024-05-21 not yet calculated CVE-2021-47304
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: dma-buf/sync_file: Don’t leak fences on merge failure Each add_fence() call does a dma_fence_get() on the relevant fence. In the error path, we weren’t calling dma_fence_put() so all those fences got leaked. Also, in the krealloc_array failure case, we weren’t freeing the fences array. Instead, ensure that i and fences are always zero-initialized and dma_fence_put() all the fences and kfree(fences) on every error path. 2024-05-21 not yet calculated CVE-2021-47305
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: fddi: fix UAF in fza_probe fp is netdev private data and it cannot be used after free_netdev() call. Using fp after free_netdev() can cause UAF bug. Fix it by moving free_netdev() after error message. TURBOchannel adapter”) 2024-05-21 not yet calculated CVE-2021-47306
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: cifs: prevent NULL deref in cifs_compose_mount_options() The optional @ref parameter might contain an NULL node_name, so prevent dereferencing it in cifs_compose_mount_options(). Addresses-Coverity: 1476408 (“Explicit null dereferenced”) 2024-05-21 not yet calculated CVE-2021-47307
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: scsi: libfc: Fix array index out of bound exception Fix array index out of bound exception in fc_rport_prli_resp(). 2024-05-21 not yet calculated CVE-2021-47308
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: validate lwtstate->data before returning from skb_tunnel_info() skb_tunnel_info() returns pointer of lwtstate->data as ip_tunnel_info type without validation. lwtstate->data can have various types such as mpls_iptunnel_encap, etc and these are not compatible. So skb_tunnel_info() should validate before returning that pointer. Splat looks like: BUG: KASAN: slab-out-of-bounds in vxlan_get_route+0x418/0x4b0 [vxlan] Read of size 2 at addr ffff888106ec2698 by task ping/811 CPU: 1 PID: 811 Comm: ping Not tainted 5.13.0+ #1195 Call Trace: dump_stack_lvl+0x56/0x7b print_address_description.constprop.8.cold.13+0x13/0x2ee ? vxlan_get_route+0x418/0x4b0 [vxlan] ? vxlan_get_route+0x418/0x4b0 [vxlan] kasan_report.cold.14+0x83/0xdf ? vxlan_get_route+0x418/0x4b0 [vxlan] vxlan_get_route+0x418/0x4b0 [vxlan] [ … ] vxlan_xmit_one+0x148b/0x32b0 [vxlan] [ … ] vxlan_xmit+0x25c5/0x4780 [vxlan] [ … ] dev_hard_start_xmit+0x1ae/0x6e0 __dev_queue_xmit+0x1f39/0x31a0 [ … ] neigh_xmit+0x2f9/0x940 mpls_xmit+0x911/0x1600 [mpls_iptunnel] lwtunnel_xmit+0x18f/0x450 ip_finish_output2+0x867/0x2040 [ … ] 2024-05-21 not yet calculated CVE-2021-47309
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: ti: fix UAF in tlan_remove_one priv is netdev private data and it cannot be used after free_netdev() call. Using priv after free_netdev() can cause UAF bug. Fix it by moving free_netdev() at the end of the function. 2024-05-21 not yet calculated CVE-2021-47310
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: qcom/emac: fix UAF in emac_remove adpt is netdev private data and it cannot be used after free_netdev() call. Using adpt after free_netdev() can cause UAF bug. Fix it by moving free_netdev() at the end of the function. 2024-05-21 not yet calculated CVE-2021-47311
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix dereference of null pointer flow In the case where chain->flags & NFT_CHAIN_HW_OFFLOAD is false then nft_flow_rule_create is not called and flow is NULL. The subsequent error handling execution via label err_destroy_flow_rule will lead to a null pointer dereference on flow when calling nft_flow_rule_destroy. Since the error path to err_destroy_flow_rule has to cater for null and non-null flows, only call nft_flow_rule_destroy if flow is non-null to fix this issue. Addresses-Coverity: (“Explicity null dereference”) 2024-05-21 not yet calculated CVE-2021-47312
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: cpufreq: CPPC: Fix potential memleak in cppc_cpufreq_cpu_init It’s a classic example of memleak, we allocate something, we fail and never free the resources. Make sure we free all resources on policy ->init() failures. 2024-05-21 not yet calculated CVE-2021-47313
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: memory: fsl_ifc: fix leak of private memory on probe failure On probe error the driver should free the memory allocated for private structure. Fix this by using resource-managed allocation. 2024-05-21 not yet calculated CVE-2021-47314
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: memory: fsl_ifc: fix leak of IO mapping on probe failure On probe error the driver should unmap the IO memory. Smatch reports: drivers/memory/fsl_ifc.c:298 fsl_ifc_ctrl_probe() warn: ‘fsl_ifc_ctrl_dev->gregs’ not released on lines: 298. 2024-05-21 not yet calculated CVE-2021-47315
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: nfsd: fix NULL dereference in nfs3svc_encode_getaclres In error cases the dentry may be NULL. Before 20798dfe249a, the encoder also checked dentry and d_really_is_positive(dentry), but that looks like overkill to me–zero status should be enough to guarantee a positive dentry. This isn’t the first time we’ve seen an error-case NULL dereference hidden in the initialization of a local variable in an xdr encoder. But I went back through the other recent rewrites and didn’t spot any similar bugs. 2024-05-21 not yet calculated CVE-2021-47316
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: powerpc/bpf: Fix detecting BPF atomic instructions Commit 91c960b0056672 (“bpf: Rename BPF_XADD and prepare to encode other atomics in .imm”) converted BPF_XADD to BPF_ATOMIC and added a way to distinguish instructions based on the immediate field. Existing JIT implementations were updated to check for the immediate field and to reject programs utilizing anything more than BPF_ADD (such as BPF_FETCH) in the immediate field. However, the check added to powerpc64 JIT did not look at the correct BPF instruction. Due to this, such programs would be accepted and incorrectly JIT’ed resulting in soft lockups, as seen with the atomic bounds test. Fix this by looking at the correct immediate value. 2024-05-21 not yet calculated CVE-2021-47317
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: arch_topology: Avoid use-after-free for scale_freq_data Currently topology_scale_freq_tick() (which gets called from scheduler_tick()) may end up using a pointer to “struct scale_freq_data”, which was previously cleared by topology_clear_scale_freq_source(), as there is no protection in place here. The users of topology_clear_scale_freq_source() though needs a guarantee that the previously cleared scale_freq_data isn’t used anymore, so they can free the related resources. Since topology_scale_freq_tick() is called from scheduler tick, we don’t want to add locking in there. Use the RCU update mechanism instead (which is already used by the scheduler’s utilization update path) to guarantee race free updates here. synchronize_rcu() makes sure that all RCU critical sections that started before it is called, will finish before it returns. And so the callers of topology_clear_scale_freq_source() don’t need to worry about their callback getting called anymore. 2024-05-21 not yet calculated CVE-2021-47318
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: virtio-blk: Fix memory leak among suspend/resume procedure The vblk->vqs should be freed before we call init_vqs() in virtblk_restore(). 2024-05-21 not yet calculated CVE-2021-47319
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: nfs: fix acl memory leak of posix_acl_create() When looking into another nfs xfstests report, I found acl and default_acl in nfs3_proc_create() and nfs3_proc_mknod() error paths are possibly leaked. Fix them in advance. 2024-05-21 not yet calculated CVE-2021-47320
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: watchdog: Fix possible use-after-free by calling del_timer_sync() This driver’s remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver’s remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself. 2024-05-21 not yet calculated CVE-2021-47321
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: NFSv4: Fix an Oops in pnfs_mark_request_commit() when doing O_DIRECT Fix an Oopsable condition in pnfs_mark_request_commit() when we’re putting a set of writes on the commit list to reschedule them after a failed pNFS attempt. 2024-05-21 not yet calculated CVE-2021-47322
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: watchdog: sc520_wdt: Fix possible use-after-free in wdt_turnoff() This module’s remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver’s remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself. 2024-05-21 not yet calculated CVE-2021-47323
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: watchdog: Fix possible use-after-free in wdt_startup() This module’s remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver’s remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself. 2024-05-21 not yet calculated CVE-2021-47324
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu: Fix arm_smmu_device refcount leak in address translation The reference counting issue happens in several exception handling paths of arm_smmu_iova_to_phys_hard(). When those error scenarios occur, the function forgets to decrease the refcount of “smmu” increased by arm_smmu_rpm_get(), causing a refcount leak. Fix this issue by jumping to “out” label when those error scenarios occur. 2024-05-21 not yet calculated CVE-2021-47325
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu: Fix arm_smmu_device refcount leak when arm_smmu_rpm_get fails arm_smmu_rpm_get() invokes pm_runtime_get_sync(), which increases the refcount of the “smmu” even though the return value is less than 0. The reference counting issue happens in some error handling paths of arm_smmu_rpm_get() in its caller functions. When arm_smmu_rpm_get() fails, the caller functions forget to decrease the refcount of “smmu” increased by arm_smmu_rpm_get(), causing a refcount leak. Fix this issue by calling pm_runtime_resume_and_get() instead of pm_runtime_get_sync() in arm_smmu_rpm_get(), which can keep the refcount balanced in case of failure. 2024-05-21 not yet calculated CVE-2021-47327
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: scsi: iscsi: Fix conn use after free during resets If we haven’t done a unbind target call we can race where iscsi_conn_teardown wakes up the EH thread and then frees the conn while those threads are still accessing the conn ehwait. We can only do one TMF per session so this just moves the TMF fields from the conn to the session. We can then rely on the iscsi_session_teardown->iscsi_remove_session->__iscsi_unbind_session call to remove the target and it’s devices, and know after that point there is no device or scsi-ml callout trying to access the session. 2024-05-21 not yet calculated CVE-2021-47328
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: scsi: megaraid_sas: Fix resource leak in case of probe failure The driver doesn’t clean up all the allocated resources properly when scsi_add_host(), megasas_start_aen() function fails during the PCI device probe. Clean up all those resources. 2024-05-21 not yet calculated CVE-2021-47329
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: tty: serial: 8250: serial_cs: Fix a memory leak in error handling path In the probe function, if the final ‘serial_config()’ fails, ‘info’ is leaking. Add a resource handling path to free this memory. 2024-05-21 not yet calculated CVE-2021-47330
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: common: usb-conn-gpio: fix NULL pointer dereference of charger When power on system with OTG cable, IDDIG’s interrupt arises before the charger registration, it will cause a NULL pointer dereference, fix the issue by registering the power supply before requesting IDDIG/VBUS irq. 2024-05-21 not yet calculated CVE-2021-47331
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ALSA: usx2y: Don’t call free_pages_exact() with NULL address Unlike some other functions, we can’t pass NULL pointer to free_pages_exact(). Add a proper NULL check for avoiding possible Oops. 2024-05-21 not yet calculated CVE-2021-47332
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: misc: alcor_pci: fix null-ptr-deref when there is no PCI bridge There is an issue with the ASPM(optional) capability checking function. A device might be attached to root complex directly, in this case, bus->self(bridge) will be NULL, thus priv->parent_pdev is NULL. Since alcor_pci_init_check_aspm(priv->parent_pdev) checks the PCI link’s ASPM capability and populate parent_cap_off, which will be used later by alcor_pci_aspm_ctrl() to dynamically turn on/off device, what we can do here is to avoid checking the capability if we are on the root complex. This will make pdev_cap_off 0 and alcor_pci_aspm_ctrl() will simply return when bring called, effectively disable ASPM for the device. [ 1.246492] BUG: kernel NULL pointer dereference, address: 00000000000000c0 [ 1.248731] RIP: 0010:pci_read_config_byte+0x5/0x40 [ 1.253998] Call Trace: [ 1.254131] ? alcor_pci_find_cap_offset.isra.0+0x3a/0x100 [alcor_pci] [ 1.254476] alcor_pci_probe+0x169/0x2d5 [alcor_pci] 2024-05-21 not yet calculated CVE-2021-47333
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: misc/libmasm/module: Fix two use after free in ibmasm_init_one In ibmasm_init_one, it calls ibmasm_init_remote_input_dev(). Inside ibmasm_init_remote_input_dev, mouse_dev and keybd_dev are allocated by input_allocate_device(), and assigned to sp->remote.mouse_dev and sp->remote.keybd_dev respectively. In the err_free_devices error branch of ibmasm_init_one, mouse_dev and keybd_dev are freed by input_free_device(), and return error. Then the execution runs into error_send_message error branch of ibmasm_init_one, where ibmasm_free_remote_input_dev(sp) is called to unregister the freed sp->remote.mouse_dev and sp->remote.keybd_dev. My patch add a “error_init_remote” label to handle the error of ibmasm_init_remote_input_dev(), to avoid the uaf bugs. 2024-05-21 not yet calculated CVE-2021-47334
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid racing on fsync_entry_slab by multi filesystem instances As syzbot reported, there is an use-after-free issue during f2fs recovery: Use-after-free write at 0xffff88823bc16040 (in kfence-#10): kmem_cache_destroy+0x1f/0x120 mm/slab_common.c:486 f2fs_recover_fsync_data+0x75b0/0x8380 fs/f2fs/recovery.c:869 f2fs_fill_super+0x9393/0xa420 fs/f2fs/super.c:3945 mount_bdev+0x26c/0x3a0 fs/super.c:1367 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x86/0x270 fs/super.c:1497 do_new_mount fs/namespace.c:2905 [inline] path_mount+0x196f/0x2be0 fs/namespace.c:3235 do_mount fs/namespace.c:3248 [inline] __do_sys_mount fs/namespace.c:3456 [inline] __se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3433 do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47 entry_SYSCALL_64_after_hwframe+0x44/0xae The root cause is multi f2fs filesystem instances can race on accessing global fsync_entry_slab pointer, result in use-after-free issue of slab cache, fixes to init/destroy this slab cache only once during module init/destroy procedure to avoid this issue. 2024-05-21 not yet calculated CVE-2021-47335
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: smackfs: restrict bytes count in smk_set_cipso() Oops, I failed to update subject line. From 07571157c91b98ce1a4aa70967531e64b78e8346 Mon Sep 17 00:00:00 2001 Date: Mon, 12 Apr 2021 22:25:06 +0900 Subject: [PATCH] smackfs: restrict bytes count in smk_set_cipso() Commit 7ef4c19d245f3dc2 (“smackfs: restrict bytes count in smackfs write functions”) missed that count > SMK_CIPSOMAX check applies to only format == SMK_FIXED24_FMT case. 2024-05-21 not yet calculated CVE-2021-47336
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: scsi: core: Fix bad pointer dereference when ehandler kthread is invalid Commit 66a834d09293 (“scsi: core: Fix error handling of scsi_host_alloc()”) changed the allocation logic to call put_device() to perform host cleanup with the assumption that IDA removal and stopping the kthread would properly be performed in scsi_host_dev_release(). However, in the unlikely case that the error handler thread fails to spawn, shost->ehandler is set to ERR_PTR(-ENOMEM). The error handler cleanup code in scsi_host_dev_release() will call kthread_stop() if shost->ehandler != NULL which will always be the case whether the kthread was successfully spawned or not. In the case that it failed to spawn this has the nasty side effect of trying to dereference an invalid pointer when kthread_stop() is called. The following splat provides an example of this behavior in the wild: scsi host11: error handler thread failed to spawn, error = -4 Kernel attempted to read user page (10c) – exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x0000010c Faulting instruction address: 0xc00000000818e9a8 Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries Modules linked in: ibmvscsi(+) scsi_transport_srp dm_multipath dm_mirror dm_region hash dm_log dm_mod fuse overlay squashfs loop CPU: 12 PID: 274 Comm: systemd-udevd Not tainted 5.13.0-rc7 #1 NIP: c00000000818e9a8 LR: c0000000089846e8 CTR: 0000000000007ee8 REGS: c000000037d12ea0 TRAP: 0300 Not tainted (5.13.0-rc7) MSR: 800000000280b033 &lt;SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE&gt; CR: 28228228 XER: 20040001 CFAR: c0000000089846e4 DAR: 000000000000010c DSISR: 40000000 IRQMASK: 0 GPR00: c0000000089846e8 c000000037d13140 c000000009cc1100 fffffffffffffffc GPR04: 0000000000000001 0000000000000000 0000000000000000 c000000037dc0000 GPR08: 0000000000000000 c000000037dc0000 0000000000000001 00000000fffff7ff GPR12: 0000000000008000 c00000000a049000 c000000037d13d00 000000011134d5a0 GPR16: 0000000000001740 c0080000190d0000 c0080000190d1740 c000000009129288 GPR20: c000000037d13bc0 0000000000000001 c000000037d13bc0 c0080000190b7898 GPR24: c0080000190b7708 0000000000000000 c000000033bb2c48 0000000000000000 GPR28: c000000046b28280 0000000000000000 000000000000010c fffffffffffffffc NIP [c00000000818e9a8] kthread_stop+0x38/0x230 LR [c0000000089846e8] scsi_host_dev_release+0x98/0x160 Call Trace: [c000000033bb2c48] 0xc000000033bb2c48 (unreliable) [c0000000089846e8] scsi_host_dev_release+0x98/0x160 [c00000000891e960] device_release+0x60/0x100 [c0000000087e55c4] kobject_release+0x84/0x210 [c00000000891ec78] put_device+0x28/0x40 [c000000008984ea4] scsi_host_alloc+0x314/0x430 [c0080000190b38bc] ibmvscsi_probe+0x54/0xad0 [ibmvscsi] [c000000008110104] vio_bus_probe+0xa4/0x4b0 [c00000000892a860] really_probe+0x140/0x680 [c00000000892aefc] driver_probe_device+0x15c/0x200 [c00000000892b63c] device_driver_attach+0xcc/0xe0 [c00000000892b740] __driver_attach+0xf0/0x200 [c000000008926f28] bus_for_each_dev+0xa8/0x130 [c000000008929ce4] driver_attach+0x34/0x50 [c000000008928fc0] bus_add_driver+0x1b0/0x300 [c00000000892c798] driver_register+0x98/0x1a0 [c00000000810eb60] __vio_register_driver+0x80/0xe0 [c0080000190b4a30] ibmvscsi_module_init+0x9c/0xdc [ibmvscsi] [c0000000080121d0] do_one_initcall+0x60/0x2d0 [c000000008261abc] do_init_module+0x7c/0x320 [c000000008265700] load_module+0x2350/0x25b0 [c000000008265cb4] __do_sys_finit_module+0xd4/0x160 [c000000008031110] system_call_exception+0x150/0x2d0 [c00000000800d35c] system_call_common+0xec/0x278 Fix this be nulling shost->ehandler when the kthread fails to spawn. 2024-05-21 not yet calculated CVE-2021-47337
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: fbmem: Do not delete the mode that is still in use The execution of fb_delete_videomode() is not based on the result of the previous fbcon_mode_deleted(). As a result, the mode is directly deleted, regardless of whether it is still in use, which may cause UAF. ================================================================== BUG: KASAN: use-after-free in fb_mode_is_equal+0x36e/0x5e0 drivers/video/fbdev/core/modedb.c:924 Read of size 4 at addr ffff88807e0ddb1c by task syz-executor.0/18962 CPU: 2 PID: 18962 Comm: syz-executor.0 Not tainted 5.10.45-rc1+ #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS … Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x137/0x1be lib/dump_stack.c:118 print_address_description+0x6c/0x640 mm/kasan/report.c:385 __kasan_report mm/kasan/report.c:545 [inline] kasan_report+0x13d/0x1e0 mm/kasan/report.c:562 fb_mode_is_equal+0x36e/0x5e0 drivers/video/fbdev/core/modedb.c:924 fbcon_mode_deleted+0x16a/0x220 drivers/video/fbdev/core/fbcon.c:2746 fb_set_var+0x1e1/0xdb0 drivers/video/fbdev/core/fbmem.c:975 do_fb_ioctl+0x4d9/0x6e0 drivers/video/fbdev/core/fbmem.c:1108 vfs_ioctl fs/ioctl.c:48 [inline] __do_sys_ioctl fs/ioctl.c:753 [inline] __se_sys_ioctl+0xfb/0x170 fs/ioctl.c:739 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 18960: kasan_save_stack mm/kasan/common.c:48 [inline] kasan_set_track+0x3d/0x70 mm/kasan/common.c:56 kasan_set_free_info+0x17/0x30 mm/kasan/generic.c:355 __kasan_slab_free+0x108/0x140 mm/kasan/common.c:422 slab_free_hook mm/slub.c:1541 [inline] slab_free_freelist_hook+0xd6/0x1a0 mm/slub.c:1574 slab_free mm/slub.c:3139 [inline] kfree+0xca/0x3d0 mm/slub.c:4121 fb_delete_videomode+0x56a/0x820 drivers/video/fbdev/core/modedb.c:1104 fb_set_var+0x1f3/0xdb0 drivers/video/fbdev/core/fbmem.c:978 do_fb_ioctl+0x4d9/0x6e0 drivers/video/fbdev/core/fbmem.c:1108 vfs_ioctl fs/ioctl.c:48 [inline] __do_sys_ioctl fs/ioctl.c:753 [inline] __se_sys_ioctl+0xfb/0x170 fs/ioctl.c:739 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 2024-05-21 not yet calculated CVE-2021-47338
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: media: v4l2-core: explicitly clear ioctl input data As seen from a recent syzbot bug report, mistakes in the compat ioctl implementation can lead to uninitialized kernel stack data getting used as input for driver ioctl handlers. The reported bug is now fixed, but it’s possible that other related bugs are still present or get added in the future. As the drivers need to check user input already, the possible impact is fairly low, but it might still cause an information leak. To be on the safe side, always clear the entire ioctl buffer before calling the conversion handler functions that are meant to initialize them. 2024-05-21 not yet calculated CVE-2021-47339
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: jfs: fix GPF in diFree Avoid passing inode with JFS_SBI(inode->i_sb)->ipimap == NULL to diFree()[1]. GFP will appear: struct inode *ipimap = JFS_SBI(ip->i_sb)->ipimap; struct inomap *imap = JFS_IP(ipimap)->i_imap; JFS_IP() will return invalid pointer when ipimap == NULL Call Trace: diFree+0x13d/0x2dc0 fs/jfs/jfs_imap.c:853 [1] jfs_evict_inode+0x2c9/0x370 fs/jfs/inode.c:154 evict+0x2ed/0x750 fs/inode.c:578 iput_final fs/inode.c:1654 [inline] iput.part.0+0x3fe/0x820 fs/inode.c:1680 iput+0x58/0x70 fs/inode.c:1670 2024-05-21 not yet calculated CVE-2021-47340
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: KVM: mmio: Fix use-after-free Read in kvm_vm_ioctl_unregister_coalesced_mmio BUG: KASAN: use-after-free in kvm_vm_ioctl_unregister_coalesced_mmio+0x7c/0x1ec arch/arm64/kvm/../../../virt/kvm/coalesced_mmio.c:183 Read of size 8 at addr ffff0000c03a2500 by task syz-executor083/4269 CPU: 5 PID: 4269 Comm: syz-executor083 Not tainted 5.10.0 #7 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x0/0x2d0 arch/arm64/kernel/stacktrace.c:132 show_stack+0x28/0x34 arch/arm64/kernel/stacktrace.c:196 __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x110/0x164 lib/dump_stack.c:118 print_address_description+0x78/0x5c8 mm/kasan/report.c:385 __kasan_report mm/kasan/report.c:545 [inline] kasan_report+0x148/0x1e4 mm/kasan/report.c:562 check_memory_region_inline mm/kasan/generic.c:183 [inline] __asan_load8+0xb4/0xbc mm/kasan/generic.c:252 kvm_vm_ioctl_unregister_coalesced_mmio+0x7c/0x1ec arch/arm64/kvm/../../../virt/kvm/coalesced_mmio.c:183 kvm_vm_ioctl+0xe30/0x14c4 arch/arm64/kvm/../../../virt/kvm/kvm_main.c:3755 vfs_ioctl fs/ioctl.c:48 [inline] __do_sys_ioctl fs/ioctl.c:753 [inline] __se_sys_ioctl fs/ioctl.c:739 [inline] __arm64_sys_ioctl+0xf88/0x131c fs/ioctl.c:739 __invoke_syscall arch/arm64/kernel/syscall.c:36 [inline] invoke_syscall arch/arm64/kernel/syscall.c:48 [inline] el0_svc_common arch/arm64/kernel/syscall.c:158 [inline] do_el0_svc+0x120/0x290 arch/arm64/kernel/syscall.c:220 el0_svc+0x1c/0x28 arch/arm64/kernel/entry-common.c:367 el0_sync_handler+0x98/0x170 arch/arm64/kernel/entry-common.c:383 el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:670 Allocated by task 4269: stack_trace_save+0x80/0xb8 kernel/stacktrace.c:121 kasan_save_stack mm/kasan/common.c:48 [inline] kasan_set_track mm/kasan/common.c:56 [inline] __kasan_kmalloc+0xdc/0x120 mm/kasan/common.c:461 kasan_kmalloc+0xc/0x14 mm/kasan/common.c:475 kmem_cache_alloc_trace include/linux/slab.h:450 [inline] kmalloc include/linux/slab.h:552 [inline] kzalloc include/linux/slab.h:664 [inline] kvm_vm_ioctl_register_coalesced_mmio+0x78/0x1cc arch/arm64/kvm/../../../virt/kvm/coalesced_mmio.c:146 kvm_vm_ioctl+0x7e8/0x14c4 arch/arm64/kvm/../../../virt/kvm/kvm_main.c:3746 vfs_ioctl fs/ioctl.c:48 [inline] __do_sys_ioctl fs/ioctl.c:753 [inline] __se_sys_ioctl fs/ioctl.c:739 [inline] __arm64_sys_ioctl+0xf88/0x131c fs/ioctl.c:739 __invoke_syscall arch/arm64/kernel/syscall.c:36 [inline] invoke_syscall arch/arm64/kernel/syscall.c:48 [inline] el0_svc_common arch/arm64/kernel/syscall.c:158 [inline] do_el0_svc+0x120/0x290 arch/arm64/kernel/syscall.c:220 el0_svc+0x1c/0x28 arch/arm64/kernel/entry-common.c:367 el0_sync_handler+0x98/0x170 arch/arm64/kernel/entry-common.c:383 el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:670 Freed by task 4269: stack_trace_save+0x80/0xb8 kernel/stacktrace.c:121 kasan_save_stack mm/kasan/common.c:48 [inline] kasan_set_track+0x38/0x6c mm/kasan/common.c:56 kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:355 __kasan_slab_free+0x124/0x150 mm/kasan/common.c:422 kasan_slab_free+0x10/0x1c mm/kasan/common.c:431 slab_free_hook mm/slub.c:1544 [inline] slab_free_freelist_hook mm/slub.c:1577 [inline] slab_free mm/slub.c:3142 [inline] kfree+0x104/0x38c mm/slub.c:4124 coalesced_mmio_destructor+0x94/0xa4 arch/arm64/kvm/../../../virt/kvm/coalesced_mmio.c:102 kvm_iodevice_destructor include/kvm/iodev.h:61 [inline] kvm_io_bus_unregister_dev+0x248/0x280 arch/arm64/kvm/../../../virt/kvm/kvm_main.c:4374 kvm_vm_ioctl_unregister_coalesced_mmio+0x158/0x1ec arch/arm64/kvm/../../../virt/kvm/coalesced_mmio.c:186 kvm_vm_ioctl+0xe30/0x14c4 arch/arm64/kvm/../../../virt/kvm/kvm_main.c:3755 vfs_ioctl fs/ioctl.c:48 [inline] __do_sys_ioctl fs/ioctl.c:753 [inline] __se_sys_ioctl fs/ioctl.c:739 [inline] __arm64_sys_ioctl+0xf88/0x131c fs/ioctl.c:739 __invoke_syscall arch/arm64/kernel/syscall.c:36 [inline] invoke_syscall arch/arm64/kernel/sys —truncated— 2024-05-21 not yet calculated CVE-2021-47341
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ext4: fix possible UAF when remounting r/o a mmp-protected file system After commit 618f003199c6 (“ext4: fix memory leak in ext4_fill_super”), after the file system is remounted read-only, there is a race where the kmmpd thread can exit, causing sbi->s_mmp_tsk to point at freed memory, which the call to ext4_stop_mmpd() can trip over. Fix this by only allowing kmmpd() to exit when it is stopped via ext4_stop_mmpd(). Bug-Report-Link: <[email protected]> 2024-05-21 not yet calculated CVE-2021-47342
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: dm btree remove: assign new_root only when removal succeeds remove_raw() in dm_btree_remove() may fail due to IO read error (e.g. read the content of origin block fails during shadowing), and the value of shadow_spine::root is uninitialized, but the uninitialized value is still assign to new_root in the end of dm_btree_remove(). For dm-thin, the value of pmd->details_root or pmd->root will become an uninitialized value, so if trying to read details_info tree again out-of-bound memory may occur as showed below: general protection fault, probably for non-canonical address 0x3fdcb14c8d7520 CPU: 4 PID: 515 Comm: dmsetup Not tainted 5.13.0-rc6 Hardware name: QEMU Standard PC RIP: 0010:metadata_ll_load_ie+0x14/0x30 Call Trace: sm_metadata_count_is_more_than_one+0xb9/0xe0 dm_tm_shadow_block+0x52/0x1c0 shadow_step+0x59/0xf0 remove_raw+0xb2/0x170 dm_btree_remove+0xf4/0x1c0 dm_pool_delete_thin_device+0xc3/0x140 pool_message+0x218/0x2b0 target_message+0x251/0x290 ctl_ioctl+0x1c4/0x4d0 dm_ctl_ioctl+0xe/0x20 __x64_sys_ioctl+0x7b/0xb0 do_syscall_64+0x40/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Fixing it by only assign new_root when removal succeeds 2024-05-21 not yet calculated CVE-2021-47343
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: media: zr364xx: fix memory leak in zr364xx_start_readpipe syzbot reported memory leak in zr364xx driver. The problem was in non-freed urb in case of usb_submit_urb() fail. backtrace: [<ffffffff82baedf6>] kmalloc include/linux/slab.h:561 [inline] [<ffffffff82baedf6>] usb_alloc_urb+0x66/0xe0 drivers/usb/core/urb.c:74 [<ffffffff82f7cce8>] zr364xx_start_readpipe+0x78/0x130 drivers/media/usb/zr364xx/zr364xx.c:1022 [<ffffffff84251dfc>] zr364xx_board_init drivers/media/usb/zr364xx/zr364xx.c:1383 [inline] [<ffffffff84251dfc>] zr364xx_probe+0x6a3/0x851 drivers/media/usb/zr364xx/zr364xx.c:1516 [<ffffffff82bb6507>] usb_probe_interface+0x177/0x370 drivers/usb/core/driver.c:396 [<ffffffff826018a9>] really_probe+0x159/0x500 drivers/base/dd.c:576 2024-05-21 not yet calculated CVE-2021-47344
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: RDMA/cma: Fix rdma_resolve_route() memory leak Fix a memory leak when “mda_resolve_route() is called more than once on the same “rdma_cm_id”. This is possible if cma_query_handler() triggers the RDMA_CM_EVENT_ROUTE_ERROR flow which puts the state machine back and allows rdma_resolve_route() to be called again. 2024-05-21 not yet calculated CVE-2021-47345
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: coresight: tmc-etf: Fix global-out-of-bounds in tmc_update_etf_buffer() commit 6f755e85c332 (“coresight: Add helper for inserting synchronization packets”) removed trailing ‘’ from barrier_pkt array and updated the call sites like etb_update_buffer() to have proper checks for barrier_pkt size before read but missed updating tmc_update_etf_buffer() which still reads barrier_pkt past the array size resulting in KASAN out-of-bounds bug. Fix this by adding a check for barrier_pkt size before accessing like it is done in etb_update_buffer(). BUG: KASAN: global-out-of-bounds in tmc_update_etf_buffer+0x4b8/0x698 Read of size 4 at addr ffffffd05b7d1030 by task perf/2629 Call trace: dump_backtrace+0x0/0x27c show_stack+0x20/0x2c dump_stack+0x11c/0x188 print_address_description+0x3c/0x4a4 __kasan_report+0x140/0x164 kasan_report+0x10/0x18 __asan_report_load4_noabort+0x1c/0x24 tmc_update_etf_buffer+0x4b8/0x698 etm_event_stop+0x248/0x2d8 etm_event_del+0x20/0x2c event_sched_out+0x214/0x6f0 group_sched_out+0xd0/0x270 ctx_sched_out+0x2ec/0x518 __perf_event_task_sched_out+0x4fc/0xe6c __schedule+0x1094/0x16a0 preempt_schedule_irq+0x88/0x170 arm64_preempt_schedule_irq+0xf0/0x18c el1_irq+0xe8/0x180 perf_event_exec+0x4d8/0x56c setup_new_exec+0x204/0x400 load_elf_binary+0x72c/0x18c0 search_binary_handler+0x13c/0x420 load_script+0x500/0x6c4 search_binary_handler+0x13c/0x420 exec_binprm+0x118/0x654 __do_execve_file+0x77c/0xba4 __arm64_compat_sys_execve+0x98/0xac el0_svc_common+0x1f8/0x5e0 el0_svc_compat_handler+0x84/0xb0 el0_svc_compat+0x10/0x50 The buggy address belongs to the variable: barrier_pkt+0x10/0x40 Memory state around the buggy address: ffffffd05b7d0f00: fa fa fa fa 04 fa fa fa fa fa fa fa 00 00 00 00 ffffffd05b7d0f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffffffd05b7d1000: 00 00 00 00 00 00 fa fa fa fa fa fa 00 00 00 03 ^ ffffffd05b7d1080: fa fa fa fa 00 02 fa fa fa fa fa fa 03 fa fa fa ffffffd05b7d1100: fa fa fa fa 00 00 00 00 05 fa fa fa fa fa fa fa ================================================================== 2024-05-21 not yet calculated CVE-2021-47346
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: wl1251: Fix possible buffer overflow in wl1251_cmd_scan Function wl1251_cmd_scan calls memcpy without checking the length. Harden by checking the length is within the maximum allowed size. 2024-05-21 not yet calculated CVE-2021-47347
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid HDCP over-read and corruption Instead of reading the desired 5 bytes of the actual target field, the code was reading 8. This could result in a corrupted value if the trailing 3 bytes were non-zero, so instead use an appropriately sized and zero-initialized bounce buffer, and read only 5 bytes before casting to u64. 2024-05-21 not yet calculated CVE-2021-47348
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mwifiex: bring down link before deleting interface We can deadlock when rmmod’ing the driver or going through firmware reset, because the cfg80211_unregister_wdev() has to bring down the link for us, … which then grab the same wiphy lock. nl80211_del_interface() already handles a very similar case, with a nice description: /* * We hold RTNL, so this is safe, without RTNL opencount cannot * reach 0, and thus the rdev cannot be deleted. * * We need to do it for the dev_close(), since that will call * the netdev notifiers, and we need to acquire the mutex there * but don’t know if we get there from here or from some other * place (e.g. “ip link set … down”). */ mutex_unlock(&rdev->wiphy.mtx); … Do similarly for mwifiex teardown, by ensuring we bring the link down first. Sample deadlock trace: [ 247.103516] INFO: task rmmod:2119 blocked for more than 123 seconds. [ 247.110630] Not tainted 5.12.4 #5 [ 247.115796] “echo 0 > /proc/sys/kernel/hung_task_timeout_secs” disables this message. [ 247.124557] task:rmmod state:D stack: 0 pid: 2119 ppid: 2114 flags:0x00400208 [ 247.133905] Call trace: [ 247.136644] __switch_to+0x130/0x170 [ 247.140643] __schedule+0x714/0xa0c [ 247.144548] schedule_preempt_disabled+0x88/0xf4 [ 247.149714] __mutex_lock_common+0x43c/0x750 [ 247.154496] mutex_lock_nested+0x5c/0x68 [ 247.158884] cfg80211_netdev_notifier_call+0x280/0x4e0 [cfg80211] [ 247.165769] raw_notifier_call_chain+0x4c/0x78 [ 247.170742] call_netdevice_notifiers_info+0x68/0xa4 [ 247.176305] __dev_close_many+0x7c/0x138 [ 247.180693] dev_close_many+0x7c/0x10c [ 247.184893] unregister_netdevice_many+0xfc/0x654 [ 247.190158] unregister_netdevice_queue+0xb4/0xe0 [ 247.195424] _cfg80211_unregister_wdev+0xa4/0x204 [cfg80211] [ 247.201816] cfg80211_unregister_wdev+0x20/0x2c [cfg80211] [ 247.208016] mwifiex_del_virtual_intf+0xc8/0x188 [mwifiex] [ 247.214174] mwifiex_uninit_sw+0x158/0x1b0 [mwifiex] [ 247.219747] mwifiex_remove_card+0x38/0xa0 [mwifiex] [ 247.225316] mwifiex_pcie_remove+0xd0/0xe0 [mwifiex_pcie] [ 247.231451] pci_device_remove+0x50/0xe0 [ 247.235849] device_release_driver_internal+0x110/0x1b0 [ 247.241701] driver_detach+0x5c/0x9c [ 247.245704] bus_remove_driver+0x84/0xb8 [ 247.250095] driver_unregister+0x3c/0x60 [ 247.254486] pci_unregister_driver+0x2c/0x90 [ 247.259267] cleanup_module+0x18/0xcdc [mwifiex_pcie] 2024-05-21 not yet calculated CVE-2021-47349
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: powerpc/mm: Fix lockup on kernel exec fault The powerpc kernel is not prepared to handle exec faults from kernel. Especially, the function is_exec_fault() will return ‘false’ when an exec fault is taken by kernel, because the check is based on reading current->thread.regs->trap which contains the trap from user. For instance, when provoking a LKDTM EXEC_USERSPACE test, current->thread.regs->trap is set to SYSCALL trap (0xc00), and the fault taken by the kernel is not seen as an exec fault by set_access_flags_filter(). Commit d7df2443cd5f (“powerpc/mm: Fix spurious segfaults on radix with autonuma”) made it clear and handled it properly. But later on commit d3ca587404b3 (“powerpc/mm: Fix reporting of kernel execute faults”) removed that handling, introducing test based on error_code. And here is the problem, because on the 603 all upper bits of SRR1 get cleared when the TLB instruction miss handler bails out to ISI. Until commit cbd7e6ca0210 (“powerpc/fault: Avoid heavy search_exception_tables() verification”), an exec fault from kernel at a userspace address was indirectly caught by the lack of entry for that address in the exception tables. But after that commit the kernel mainly relies on KUAP or on core mm handling to catch wrong user accesses. Here the access is not wrong, so mm handles it. It is a minor fault because PAGE_EXEC is not set, set_access_flags_filter() should set PAGE_EXEC and voila. But as is_exec_fault() returns false as explained in the beginning, set_access_flags_filter() bails out without setting PAGE_EXEC flag, which leads to a forever minor exec fault. As the kernel is not prepared to handle such exec faults, the thing to do is to fire in bad_kernel_fault() for any exec fault taken by the kernel, as it was prior to commit d3ca587404b3. 2024-05-21 not yet calculated CVE-2021-47350
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ubifs: Fix races between xattr_{set|get} and listxattr operations UBIFS may occur some problems with concurrent xattr_{set|get} and listxattr operations, such as assertion failure, memory corruption, stale xattr value[1]. Fix it by importing a new rw-lock in @ubifs_inode to serilize write operations on xattr, concurrent read operations are still effective, just like ext4. [1] https://lore.kernel.org/linux-mtd/[email protected] 2024-05-21 not yet calculated CVE-2021-47351
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: virtio-net: Add validation for used length This adds validation for used length (might come from an untrusted device) to avoid data corruption or loss. 2024-05-21 not yet calculated CVE-2021-47352
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: udf: Fix NULL pointer dereference in udf_symlink function In function udf_symlink, epos.bh is assigned with the value returned by udf_tgetblk. The function udf_tgetblk is defined in udf/misc.c and returns the value of sb_getblk function that could be NULL. Then, epos.bh is used without any check, causing a possible NULL pointer dereference when sb_getblk fails. This fix adds a check to validate the value of epos.bh. 2024-05-21 not yet calculated CVE-2021-47353
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/sched: Avoid data corruptions Wait for all dependencies of a job to complete before killing it to avoid data corruptions. 2024-05-21 not yet calculated CVE-2021-47354
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: atm: nicstar: Fix possible use-after-free in nicstar_cleanup() This module’s remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver’s remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself. 2024-05-21 not yet calculated CVE-2021-47355
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mISDN: fix possible use-after-free in HFC_cleanup() This module’s remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver’s remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself. 2024-05-21 not yet calculated CVE-2021-47356
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: atm: iphase: fix possible use-after-free in ia_module_exit() This module’s remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver’s remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself. 2024-05-21 not yet calculated CVE-2021-47357
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: staging: greybus: uart: fix tty use after free User space can hold a tty open indefinitely and tty drivers must not release the underlying structures until the last user is gone. Switch to using the tty-port reference counter to manage the life time of the greybus tty state to avoid use after free after a disconnect. 2024-05-21 not yet calculated CVE-2021-47358
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix soft lockup during fsstress Below traces are observed during fsstress and system got hung. [ 130.698396] watchdog: BUG: soft lockup – CPU#6 stuck for 26s! 2024-05-21 not yet calculated CVE-2021-47359
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: binder: make sure fd closes complete During BC_FREE_BUFFER processing, the BINDER_TYPE_FDA object cleanup may close 1 or more fds. The close operations are completed using the task work mechanism — which means the thread needs to return to userspace or the file object may never be dereferenced — which can lead to hung processes. Force the binder thread back to userspace if an fd is closed during BC_FREE_BUFFER handling. 2024-05-21 not yet calculated CVE-2021-47360
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mcb: fix error handling in mcb_alloc_bus() There are two bugs: 1) If ida_simple_get() fails then this code calls put_device(carrier) but we haven’t yet called get_device(carrier) and probably that leads to a use after free. 2) After device_initialize() then we need to use put_device() to release the bus. This will free the internal resources tied to the device and call mcb_free_bus() which will free the rest. 2024-05-21 not yet calculated CVE-2021-47361
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: Update intermediate power state for SI Update the current state as boot state during dpm initialization. During the subsequent initialization, set_power_state gets called to transition to the final power state. set_power_state refers to values from the current state and without current state populated, it could result in NULL pointer dereference. For ex: on platforms where PCI speed change is supported through ACPI ATCS method, the link speed of current state needs to be queried before deciding on changing to final power state’s link speed. The logic to query ATCS-support was broken on certain platforms. The issue became visible when broken ATCS-support logic got fixed with commit f9b7f3703ff9 (“drm/amdgpu/acpi: make ATPX/ATCS structures global (v2)”). Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1698 2024-05-21 not yet calculated CVE-2021-47362
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: nexthop: Fix division by zero while replacing a resilient group The resilient nexthop group torture tests in fib_nexthop.sh exposed a possible division by zero while replacing a resilient group [1]. The division by zero occurs when the data path sees a resilient nexthop group with zero buckets. The tests replace a resilient nexthop group in a loop while traffic is forwarded through it. The tests do not specify the number of buckets while performing the replacement, resulting in the kernel allocating a stub resilient table (i.e, ‘struct nh_res_table’) with zero buckets. This table should never be visible to the data path, but the old nexthop group (i.e., ‘oldg’) might still be used by the data path when the stub table is assigned to it. Fix this by only assigning the stub table to the old nexthop group after making sure the group is no longer used by the data path. Tested with fib_nexthops.sh: Tests passed: 222 Tests failed: 0 [1] divide error: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 1850 Comm: ping Not tainted 5.14.0-custom-10271-ga86eb53057fe #1107 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-4.fc34 04/01/2014 RIP: 0010:nexthop_select_path+0x2d2/0x1a80 […] Call Trace: fib_select_multipath+0x79b/0x1530 fib_select_path+0x8fb/0x1c10 ip_route_output_key_hash_rcu+0x1198/0x2da0 ip_route_output_key_hash+0x190/0x340 ip_route_output_flow+0x21/0x120 raw_sendmsg+0x91d/0x2e10 inet_sendmsg+0x9e/0xe0 __sys_sendto+0x23d/0x360 __x64_sys_sendto+0xe1/0x1b0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae 2024-05-21 not yet calculated CVE-2021-47363
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: comedi: Fix memory leak in compat_insnlist() `compat_insnlist()` handles the 32-bit version of the `COMEDI_INSNLIST` ioctl (whenwhen `CONFIG_COMPAT` is enabled). It allocates memory to temporarily hold an array of `struct comedi_insn` converted from the 32-bit version in user space. This memory is only being freed if there is a fault while filling the array, otherwise it is leaked. Add a call to `kfree()` to fix the leak. 2024-05-21 not yet calculated CVE-2021-47364
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: afs: Fix page leak There’s a loop in afs_extend_writeback() that adds extra pages to a write we want to make to improve the efficiency of the writeback by making it larger. This loop stops, however, if we hit a page we can’t write back from immediately, but it doesn’t get rid of the page ref we speculatively acquired. This was caused by the removal of the cleanup loop when the code switched from using find_get_pages_contig() to xarray scanning as the latter only gets a single page at a time, not a batch. Fix this by putting the page on a ref on an early break from the loop. Unfortunately, we can’t just add that page to the pagevec we’re employing as we’ll go through that and add those pages to the RPC call. This was found by the generic/074 test. It leaks ~4GiB of RAM each time it is run – which can be observed with “top”. 2024-05-21 not yet calculated CVE-2021-47365
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: afs: Fix corruption in reads at fpos 2G-4G from an OpenAFS server AFS-3 has two data fetch RPC variants, FS.FetchData and FS.FetchData64, and Linux’s afs client switches between them when talking to a non-YFS server if the read size, the file position or the sum of the two have the upper 32 bits set of the 64-bit value. This is a problem, however, since the file position and length fields of FS.FetchData are *signed* 32-bit values. Fix this by capturing the capability bits obtained from the fileserver when it’s sent an FS.GetCapabilities RPC, rather than just discarding them, and then picking out the VICED_CAPABILITY_64BITFILES flag. This can then be used to decide whether to use FS.FetchData or FS.FetchData64 – and also FS.StoreData or FS.StoreData64 – rather than using upper_32_bits() to switch on the parameter values. This capabilities flag could also be used to limit the maximum size of the file, but all servers must be checked for that. Note that the issue does not exist with FS.StoreData – that uses *unsigned* 32-bit values. It’s also not a problem with Auristor servers as its YFS.FetchData64 op uses unsigned 64-bit values. This can be tested by cloning a git repo through an OpenAFS client to an OpenAFS server and then doing “git status” on it from a Linux afs client[1]. Provided the clone has a pack file that’s in the 2G-4G range, the git status will show errors like: error: packfile .git/objects/pack/pack-5e813c51d12b6847bbc0fcd97c2bca66da50079c.pack does not match index error: packfile .git/objects/pack/pack-5e813c51d12b6847bbc0fcd97c2bca66da50079c.pack does not match index This can be observed in the server’s FileLog with something like the following appearing: Sun Aug 29 19:31:39 2021 SRXAFS_FetchData, Fid = 2303380852.491776.3263114, Host 192.168.11.201:7001, Id 1001 Sun Aug 29 19:31:39 2021 CheckRights: len=0, for host=192.168.11.201:7001 Sun Aug 29 19:31:39 2021 FetchData_RXStyle: Pos 18446744071815340032, Len 3154 Sun Aug 29 19:31:39 2021 FetchData_RXStyle: file size 2400758866 … Sun Aug 29 19:31:40 2021 SRXAFS_FetchData returns 5 Note the file position of 18446744071815340032. This is the requested file position sign-extended. 2024-05-21 not yet calculated CVE-2021-47366
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: virtio-net: fix pages leaking when building skb in big mode We try to use build_skb() if we had sufficient tailroom. But we forget to release the unused pages chained via private in big mode which will leak pages. Fixing this by release the pages after building the skb in big mode. 2024-05-21 not yet calculated CVE-2021-47367
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: enetc: Fix illegal access when reading affinity_hint irq_set_affinity_hit() stores a reference to the cpumask_t parameter in the irq descriptor, and that reference can be accessed later from irq_affinity_hint_proc_show(). Since the cpu_mask parameter passed to irq_set_affinity_hit() has only temporary storage (it’s on the stack memory), later accesses to it are illegal. Thus reads from the corresponding procfs affinity_hint file can result in paging request oops. The issue is fixed by the get_cpu_mask() helper, which provides a permanent storage for the cpumask_t parameter. 2024-05-21 not yet calculated CVE-2021-47368
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: s390/qeth: fix NULL deref in qeth_clear_working_pool_list() When qeth_set_online() calls qeth_clear_working_pool_list() to roll back after an error exit from qeth_hardsetup_card(), we are at risk of accessing card->qdio.in_q before it was allocated by qeth_alloc_qdio_queues() via qeth_mpc_initialize(). qeth_clear_working_pool_list() then dereferences NULL, and by writing to queue->bufs[i].pool_entry scribbles all over the CPU’s lowcore. Resulting in a crash when those lowcore areas are used next (eg. on the next machine-check interrupt). Such a scenario would typically happen when the device is first set online and its queues aren’t allocated yet. An early IO error or certain misconfigs (eg. mismatched transport mode, bad portno) then cause us to error out from qeth_hardsetup_card() with card->qdio.in_q still being NULL. Fix it by checking the pointer for NULL before accessing it. Note that we also have (rare) paths inside qeth_mpc_initialize() where a configuration change can cause us to free the existing queues, expecting that subsequent code will allocate them again. If we then error out before that re-allocation happens, the same bug occurs. Root-caused-by: Heiko Carstens <[email protected]> 2024-05-21 not yet calculated CVE-2021-47369
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mptcp: ensure tx skbs always have the MPTCP ext Due to signed/unsigned comparison, the expression: info->size_goal – skb->len > 0 evaluates to true when the size goal is smaller than the skb size. That results in lack of tx cache refill, so that the skb allocated by the core TCP code lacks the required MPTCP skb extensions. Due to the above, syzbot is able to trigger the following WARN_ON(): WARNING: CPU: 1 PID: 810 at net/mptcp/protocol.c:1366 mptcp_sendmsg_frag+0x1362/0x1bc0 net/mptcp/protocol.c:1366 Modules linked in: CPU: 1 PID: 810 Comm: syz-executor.4 Not tainted 5.14.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:mptcp_sendmsg_frag+0x1362/0x1bc0 net/mptcp/protocol.c:1366 Code: ff 4c 8b 74 24 50 48 8b 5c 24 58 e9 0f fb ff ff e8 13 44 8b f8 4c 89 e7 45 31 ed e8 98 57 2e fe e9 81 f4 ff ff e8 fe 43 8b f8 <0f> 0b 41 bd ea ff ff ff e9 6f f4 ff ff 4c 89 e7 e8 b9 8e d2 f8 e9 RSP: 0018:ffffc9000531f6a0 EFLAGS: 00010216 RAX: 000000000000697f RBX: 0000000000000000 RCX: ffffc90012107000 RDX: 0000000000040000 RSI: ffffffff88eac9e2 RDI: 0000000000000003 RBP: ffff888078b15780 R08: 0000000000000000 R09: 0000000000000000 R10: ffffffff88eac017 R11: 0000000000000000 R12: ffff88801de0a280 R13: 0000000000006b58 R14: ffff888066278280 R15: ffff88803c2fe9c0 FS: 00007fd9f866e700(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007faebcb2f718 CR3: 00000000267cb000 CR4: 00000000001506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __mptcp_push_pending+0x1fb/0x6b0 net/mptcp/protocol.c:1547 mptcp_release_cb+0xfe/0x210 net/mptcp/protocol.c:3003 release_sock+0xb4/0x1b0 net/core/sock.c:3206 sk_stream_wait_memory+0x604/0xed0 net/core/stream.c:145 mptcp_sendmsg+0xc39/0x1bc0 net/mptcp/protocol.c:1749 inet6_sendmsg+0x99/0xe0 net/ipv6/af_inet6.c:643 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 sock_write_iter+0x2a0/0x3e0 net/socket.c:1057 call_write_iter include/linux/fs.h:2163 [inline] new_sync_write+0x40b/0x640 fs/read_write.c:507 vfs_write+0x7cf/0xae0 fs/read_write.c:594 ksys_write+0x1ee/0x250 fs/read_write.c:647 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x4665f9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fd9f866e188 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000056c038 RCX: 00000000004665f9 RDX: 00000000000e7b78 RSI: 0000000020000000 RDI: 0000000000000003 RBP: 00000000004bfcc4 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 000000000056c038 R13: 0000000000a9fb1f R14: 00007fd9f866e300 R15: 0000000000022000 Fix the issue rewriting the relevant expression to avoid sign-related problems – note: size_goal is always >= 0. Additionally, ensure that the skb in the tx cache always carries the relevant extension. 2024-05-21 not yet calculated CVE-2021-47370
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: nexthop: Fix memory leaks in nexthop notification chain listeners syzkaller discovered memory leaks [1] that can be reduced to the following commands: # ip nexthop add id 1 blackhole # devlink dev reload pci/0000:06:00.0 As part of the reload flow, mlxsw will unregister its netdevs and then unregister from the nexthop notification chain. Before unregistering from the notification chain, mlxsw will receive delete notifications for nexthop objects using netdevs registered by mlxsw or their uppers. mlxsw will not receive notifications for nexthops using netdevs that are not dismantled as part of the reload flow. For example, the blackhole nexthop above that internally uses the loopback netdev as its nexthop device. One way to fix this problem is to have listeners flush their nexthop tables after unregistering from the notification chain. This is error-prone as evident by this patch and also not symmetric with the registration path where a listener receives a dump of all the existing nexthops. Therefore, fix this problem by replaying delete notifications for the listener being unregistered. This is symmetric to the registration path and also consistent with the netdev notification chain. The above means that unregister_nexthop_notifier(), like register_nexthop_notifier(), will have to take RTNL in order to iterate over the existing nexthops and that any callers of the function cannot hold RTNL. This is true for mlxsw and netdevsim, but not for the VXLAN driver. To avoid a deadlock, change the latter to unregister its nexthop listener without holding RTNL, making it symmetric to the registration path. [1] unreferenced object 0xffff88806173d600 (size 512): comm “syz-executor.0”, pid 1290, jiffies 4295583142 (age 143.507s) hex dump (first 32 bytes): 41 9d 1e 60 80 88 ff ff 08 d6 73 61 80 88 ff ff A..`……sa…. 08 d6 73 61 80 88 ff ff 01 00 00 00 00 00 00 00 ..sa………… backtrace: [<ffffffff81a6b576>] kmemleak_alloc_recursive include/linux/kmemleak.h:43 [inline] [<ffffffff81a6b576>] slab_post_alloc_hook+0x96/0x490 mm/slab.h:522 [<ffffffff81a716d3>] slab_alloc_node mm/slub.c:3206 [inline] [<ffffffff81a716d3>] slab_alloc mm/slub.c:3214 [inline] [<ffffffff81a716d3>] kmem_cache_alloc_trace+0x163/0x370 mm/slub.c:3231 [<ffffffff82e8681a>] kmalloc include/linux/slab.h:591 [inline] [<ffffffff82e8681a>] kzalloc include/linux/slab.h:721 [inline] [<ffffffff82e8681a>] mlxsw_sp_nexthop_obj_group_create drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:4918 [inline] [<ffffffff82e8681a>] mlxsw_sp_nexthop_obj_new drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:5054 [inline] [<ffffffff82e8681a>] mlxsw_sp_nexthop_obj_event+0x59a/0x2910 drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:5239 [<ffffffff813ef67d>] notifier_call_chain+0xbd/0x210 kernel/notifier.c:83 [<ffffffff813f0662>] blocking_notifier_call_chain kernel/notifier.c:318 [inline] [<ffffffff813f0662>] blocking_notifier_call_chain+0x72/0xa0 kernel/notifier.c:306 [<ffffffff8384b9c6>] call_nexthop_notifiers+0x156/0x310 net/ipv4/nexthop.c:244 [<ffffffff83852bd8>] insert_nexthop net/ipv4/nexthop.c:2336 [inline] [<ffffffff83852bd8>] nexthop_add net/ipv4/nexthop.c:2644 [inline] [<ffffffff83852bd8>] rtm_new_nexthop+0x14e8/0x4d10 net/ipv4/nexthop.c:2913 [<ffffffff833e9a78>] rtnetlink_rcv_msg+0x448/0xbf0 net/core/rtnetlink.c:5572 [<ffffffff83608703>] netlink_rcv_skb+0x173/0x480 net/netlink/af_netlink.c:2504 [<ffffffff833de032>] rtnetlink_rcv+0x22/0x30 net/core/rtnetlink.c:5590 [<ffffffff836069de>] netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline] [<ffffffff836069de>] netlink_unicast+0x5ae/0x7f0 net/netlink/af_netlink.c:1340 [<ffffffff83607501>] netlink_sendmsg+0x8e1/0xe30 net/netlink/af_netlink.c:1929 [<ffffffff832fde84>] sock_sendmsg_nosec net/socket.c:704 [inline —truncated— 2024-05-21 not yet calculated CVE-2021-47371
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: macb: fix use after free on rmmod plat_dev->dev->platform_data is released by platform_device_unregister(), use of pclk and hclk is a use-after-free. Since device unregister won’t need a clk device we adjust the function call sequence to fix this issue. [ 31.261225] BUG: KASAN: use-after-free in macb_remove+0x77/0xc6 [macb_pci] [ 31.275563] Freed by task 306: [ 30.276782] platform_device_release+0x25/0x80 2024-05-21 not yet calculated CVE-2021-47372
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v3-its: Fix potential VPE leak on error In its_vpe_irq_domain_alloc, when its_vpe_init() returns an error, there is an off-by-one in the number of VPEs to be freed. Fix it by simply passing the number of VPEs allocated, which is the index of the loop iterating over the VPEs. [maz: fixed commit message] 2024-05-21 not yet calculated CVE-2021-47373
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: dma-debug: prevent an error message from causing runtime problems For some drivers, that use the DMA API. This error message can be reached several millions of times per second, causing spam to the kernel’s printk buffer and bringing the CPU usage up to 100% (so, it should be rate limited). However, since there is at least one driver that is in the mainline and suffers from the error condition, it is more useful to err_printk() here instead of just rate limiting the error message (in hopes that it will make it easier for other drivers that suffer from this issue to be spotted). 2024-05-21 not yet calculated CVE-2021-47374
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: blktrace: Fix uaf in blk_trace access after removing by sysfs There is an use-after-free problem triggered by following process: P1(sda) P2(sdb) echo 0 > /sys/block/sdb/trace/enable blk_trace_remove_queue synchronize_rcu blk_trace_free relay_close rcu_read_lock __blk_add_trace trace_note_tsk (Iterate running_trace_list) relay_close_buf relay_destroy_buf kfree(buf) trace_note(sdb’s bt) relay_reserve buf->offset <- nullptr deference (use-after-free) !!! rcu_read_unlock [ 502.714379] BUG: kernel NULL pointer dereference, address: 0000000000000010 [ 502.715260] #PF: supervisor read access in kernel mode [ 502.715903] #PF: error_code(0x0000) – not-present page [ 502.716546] PGD 103984067 P4D 103984067 PUD 17592b067 PMD 0 [ 502.717252] Oops: 0000 [#1] SMP [ 502.720308] RIP: 0010:trace_note.isra.0+0x86/0x360 [ 502.732872] Call Trace: [ 502.733193] __blk_add_trace.cold+0x137/0x1a3 [ 502.733734] blk_add_trace_rq+0x7b/0xd0 [ 502.734207] blk_add_trace_rq_issue+0x54/0xa0 [ 502.734755] blk_mq_start_request+0xde/0x1b0 [ 502.735287] scsi_queue_rq+0x528/0x1140 … [ 502.742704] sg_new_write.isra.0+0x16e/0x3e0 [ 502.747501] sg_ioctl+0x466/0x1100 Reproduce method: ioctl(/dev/sda, BLKTRACESETUP, blk_user_trace_setup[buf_size=127]) ioctl(/dev/sda, BLKTRACESTART) ioctl(/dev/sdb, BLKTRACESETUP, blk_user_trace_setup[buf_size=127]) ioctl(/dev/sdb, BLKTRACESTART) echo 0 > /sys/block/sdb/trace/enable & // Add delay(mdelay/msleep) before kernel enters blk_trace_free() ioctl$SG_IO(/dev/sda, SG_IO, …) // Enters trace_note_tsk() after blk_trace_free() returned // Use mdelay in rcu region rather than msleep(which may schedule out) Remove blk_trace from running_list before calling blk_trace_free() by sysfs if blk_trace is at Blktrace_running state. 2024-05-21 not yet calculated CVE-2021-47375
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: bpf: Add oversize check before call kvcalloc() Commit 7661809d493b (“mm: don’t allow oversized kvmalloc() calls”) add the oversize check. When the allocation is larger than what kmalloc() supports, the following warning triggered: WARNING: CPU: 0 PID: 8408 at mm/util.c:597 kvmalloc_node+0x108/0x110 mm/util.c:597 Modules linked in: CPU: 0 PID: 8408 Comm: syz-executor221 Not tainted 5.14.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:kvmalloc_node+0x108/0x110 mm/util.c:597 Call Trace: kvmalloc include/linux/mm.h:806 [inline] kvmalloc_array include/linux/mm.h:824 [inline] kvcalloc include/linux/mm.h:829 [inline] check_btf_line kernel/bpf/verifier.c:9925 [inline] check_btf_info kernel/bpf/verifier.c:10049 [inline] bpf_check+0xd634/0x150d0 kernel/bpf/verifier.c:13759 bpf_prog_load kernel/bpf/syscall.c:2301 [inline] __sys_bpf+0x11181/0x126e0 kernel/bpf/syscall.c:4587 __do_sys_bpf kernel/bpf/syscall.c:4691 [inline] __se_sys_bpf kernel/bpf/syscall.c:4689 [inline] __x64_sys_bpf+0x78/0x90 kernel/bpf/syscall.c:4689 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae 2024-05-21 not yet calculated CVE-2021-47376
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: xen/balloon: use a kernel thread instead a workqueue Today the Xen ballooning is done via delayed work in a workqueue. This might result in workqueue hangups being reported in case of large amounts of memory are being ballooned in one go (here 16GB): BUG: workqueue lockup – pool cpus=6 node=0 flags=0x0 nice=0 stuck for 64s! Showing busy workqueues and worker pools: workqueue events: flags=0x0 pwq 12: cpus=6 node=0 flags=0x0 nice=0 active=2/256 refcnt=3 in-flight: 229:balloon_process pending: cache_reap workqueue events_freezable_power_: flags=0x84 pwq 12: cpus=6 node=0 flags=0x0 nice=0 active=1/256 refcnt=2 pending: disk_events_workfn workqueue mm_percpu_wq: flags=0x8 pwq 12: cpus=6 node=0 flags=0x0 nice=0 active=1/256 refcnt=2 pending: vmstat_update pool 12: cpus=6 node=0 flags=0x0 nice=0 hung=64s workers=3 idle: 2222 43 This can easily be avoided by using a dedicated kernel thread for doing the ballooning work. 2024-05-21 not yet calculated CVE-2021-47377
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: nvme-rdma: destroy cm id before destroy qp to avoid use after free We should always destroy cm_id before destroy qp to avoid to get cma event after qp was destroyed, which may lead to use after free. In RDMA connection establishment error flow, don’t destroy qp in cm event handler.Just report cm_error to upper level, qp will be destroy in nvme_rdma_alloc_queue() after destroy cm id. 2024-05-21 not yet calculated CVE-2021-47378
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: fix UAF by grabbing blkcg lock before destroying blkg pd KASAN reports a use-after-free report when doing fuzz test: [693354.104835] ================================================================== [693354.105094] BUG: KASAN: use-after-free in bfq_io_set_weight_legacy+0xd3/0x160 [693354.105336] Read of size 4 at addr ffff888be0a35664 by task sh/1453338 [693354.105607] CPU: 41 PID: 1453338 Comm: sh Kdump: loaded Not tainted 4.18.0-147 [693354.105610] Hardware name: Huawei 2288H V5/BC11SPSCB0, BIOS 0.81 07/02/2018 [693354.105612] Call Trace: [693354.105621] dump_stack+0xf1/0x19b [693354.105626] ? show_regs_print_info+0x5/0x5 [693354.105634] ? printk+0x9c/0xc3 [693354.105638] ? cpumask_weight+0x1f/0x1f [693354.105648] print_address_description+0x70/0x360 [693354.105654] kasan_report+0x1b2/0x330 [693354.105659] ? bfq_io_set_weight_legacy+0xd3/0x160 [693354.105665] ? bfq_io_set_weight_legacy+0xd3/0x160 [693354.105670] bfq_io_set_weight_legacy+0xd3/0x160 [693354.105675] ? bfq_cpd_init+0x20/0x20 [693354.105683] cgroup_file_write+0x3aa/0x510 [693354.105693] ? ___slab_alloc+0x507/0x540 [693354.105698] ? cgroup_file_poll+0x60/0x60 [693354.105702] ? 0xffffffff89600000 [693354.105708] ? usercopy_abort+0x90/0x90 [693354.105716] ? mutex_lock+0xef/0x180 [693354.105726] kernfs_fop_write+0x1ab/0x280 [693354.105732] ? cgroup_file_poll+0x60/0x60 [693354.105738] vfs_write+0xe7/0x230 [693354.105744] ksys_write+0xb0/0x140 [693354.105749] ? __ia32_sys_read+0x50/0x50 [693354.105760] do_syscall_64+0x112/0x370 [693354.105766] ? syscall_return_slowpath+0x260/0x260 [693354.105772] ? do_page_fault+0x9b/0x270 [693354.105779] ? prepare_exit_to_usermode+0xf9/0x1a0 [693354.105784] ? enter_from_user_mode+0x30/0x30 [693354.105793] entry_SYSCALL_64_after_hwframe+0x65/0xca [693354.105875] Allocated by task 1453337: [693354.106001] kasan_kmalloc+0xa0/0xd0 [693354.106006] kmem_cache_alloc_node_trace+0x108/0x220 [693354.106010] bfq_pd_alloc+0x96/0x120 [693354.106015] blkcg_activate_policy+0x1b7/0x2b0 [693354.106020] bfq_create_group_hierarchy+0x1e/0x80 [693354.106026] bfq_init_queue+0x678/0x8c0 [693354.106031] blk_mq_init_sched+0x1f8/0x460 [693354.106037] elevator_switch_mq+0xe1/0x240 [693354.106041] elevator_switch+0x25/0x40 [693354.106045] elv_iosched_store+0x1a1/0x230 [693354.106049] queue_attr_store+0x78/0xb0 [693354.106053] kernfs_fop_write+0x1ab/0x280 [693354.106056] vfs_write+0xe7/0x230 [693354.106060] ksys_write+0xb0/0x140 [693354.106064] do_syscall_64+0x112/0x370 [693354.106069] entry_SYSCALL_64_after_hwframe+0x65/0xca [693354.106114] Freed by task 1453336: [693354.106225] __kasan_slab_free+0x130/0x180 [693354.106229] kfree+0x90/0x1b0 [693354.106233] blkcg_deactivate_policy+0x12c/0x220 [693354.106238] bfq_exit_queue+0xf5/0x110 [693354.106241] blk_mq_exit_sched+0x104/0x130 [693354.106245] __elevator_exit+0x45/0x60 [693354.106249] elevator_switch_mq+0xd6/0x240 [693354.106253] elevator_switch+0x25/0x40 [693354.106257] elv_iosched_store+0x1a1/0x230 [693354.106261] queue_attr_store+0x78/0xb0 [693354.106264] kernfs_fop_write+0x1ab/0x280 [693354.106268] vfs_write+0xe7/0x230 [693354.106271] ksys_write+0xb0/0x140 [693354.106275] do_syscall_64+0x112/0x370 [693354.106280] entry_SYSCALL_64_after_hwframe+0x65/0xca [693354.106329] The buggy address belongs to the object at ffff888be0a35580 which belongs to the cache kmalloc-1k of size 1024 [693354.106736] The buggy address is located 228 bytes inside of 1024-byte region [ffff888be0a35580, ffff888be0a35980) [693354.107114] The buggy address belongs to the page: [693354.107273] page:ffffea002f828c00 count:1 mapcount:0 mapping:ffff888107c17080 index:0x0 compound_mapcount: 0 [693354.107606] flags: 0x17ffffc0008100(slab|head) [693354.107760] raw: 0017ffffc0008100 ffffea002fcbc808 ffffea0030bd3a08 ffff888107c17080 [693354.108020] r —truncated— 2024-05-21 not yet calculated CVE-2021-47379
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: HID: amd_sfh: Fix potential NULL pointer dereference devm_add_action_or_reset() can suddenly invoke amd_mp2_pci_remove() at registration that will cause NULL pointer dereference since corresponding data is not initialized yet. The patch moves initialization of data before devm_add_action_or_reset(). Found by Linux Driver Verification project (linuxtesting.org). [[email protected]: rebase] 2024-05-21 not yet calculated CVE-2021-47380
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: Fix DSP oops stack dump output contents Fix @buf arg given to hex_dump_to_buffer() and stack address used in dump error output. 2024-05-21 not yet calculated CVE-2021-47381
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: s390/qeth: fix deadlock during failing recovery Commit 0b9902c1fcc5 (“s390/qeth: fix deadlock during recovery”) removed taking discipline_mutex inside qeth_do_reset(), fixing potential deadlocks. An error path was missed though, that still takes discipline_mutex and thus has the original deadlock potential. Intermittent deadlocks were seen when a qeth channel path is configured offline, causing a race between qeth_do_reset and ccwgroup_remove. Call qeth_set_offline() directly in the qeth_do_reset() error case and then a new variant of ccwgroup_set_offline(), without taking discipline_mutex. 2024-05-21 not yet calculated CVE-2021-47382
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: tty: Fix out-of-bound vmalloc access in imageblit This issue happens when a userspace program does an ioctl FBIOPUT_VSCREENINFO passing the fb_var_screeninfo struct containing only the fields xres, yres, and bits_per_pixel with values. If this struct is the same as the previous ioctl, the vc_resize() detects it and doesn’t call the resize_screen(), leaving the fb_var_screeninfo incomplete. And this leads to the updatescrollmode() calculates a wrong value to fbcon_display->vrows, which makes the real_y() return a wrong value of y, and that value, eventually, causes the imageblit to access an out-of-bound address value. To solve this issue I made the resize_screen() be called even if the screen does not need any resizing, so it will “fix and fill” the fb_var_screeninfo independently. 2024-05-21 not yet calculated CVE-2021-47383
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: hwmon: (w83793) Fix NULL pointer dereference by removing unnecessary structure field If driver read tmp value sufficient for (tmp & 0x08) && (!(tmp & 0x80)) && ((tmp & 0x7) == ((tmp >> 4) & 0x7)) from device then Null pointer dereference occurs. (It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers) Also lm75[] does not serve a purpose anymore after switching to devm_i2c_new_dummy_device() in w83791d_detect_subclients(). The patch fixes possible NULL pointer dereference by removing lm75[]. Found by Linux Driver Verification project (linuxtesting.org). [groeck: Dropped unnecessary continuation lines, fixed multi-line alignments] 2024-05-21 not yet calculated CVE-2021-47384
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: hwmon: (w83792d) Fix NULL pointer dereference by removing unnecessary structure field If driver read val value sufficient for (val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7)) from device then Null pointer dereference occurs. (It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers) Also lm75[] does not serve a purpose anymore after switching to devm_i2c_new_dummy_device() in w83791d_detect_subclients(). The patch fixes possible NULL pointer dereference by removing lm75[]. Found by Linux Driver Verification project (linuxtesting.org). [groeck: Dropped unnecessary continuation lines, fixed multipline alignment] 2024-05-21 not yet calculated CVE-2021-47385
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: hwmon: (w83791d) Fix NULL pointer dereference by removing unnecessary structure field If driver read val value sufficient for (val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7)) from device then Null pointer dereference occurs. (It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers) Also lm75[] does not serve a purpose anymore after switching to devm_i2c_new_dummy_device() in w83791d_detect_subclients(). The patch fixes possible NULL pointer dereference by removing lm75[]. Found by Linux Driver Verification project (linuxtesting.org). [groeck: Dropped unnecessary continuation lines, fixed multi-line alignment] 2024-05-21 not yet calculated CVE-2021-47386
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: cpufreq: schedutil: Use kobject release() method to free sugov_tunables The struct sugov_tunables is protected by the kobject, so we can’t free it directly. Otherwise we would get a call trace like this: ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x30 WARNING: CPU: 3 PID: 720 at lib/debugobjects.c:505 debug_print_object+0xb8/0x100 Modules linked in: CPU: 3 PID: 720 Comm: a.sh Tainted: G W 5.14.0-rc1-next-20210715-yocto-standard+ #507 Hardware name: Marvell OcteonTX CN96XX board (DT) pstate: 40400009 (nZcv daif +PAN -UAO -TCO BTYPE=–) pc : debug_print_object+0xb8/0x100 lr : debug_print_object+0xb8/0x100 sp : ffff80001ecaf910 x29: ffff80001ecaf910 x28: ffff00011b10b8d0 x27: ffff800011043d80 x26: ffff00011a8f0000 x25: ffff800013cb3ff0 x24: 0000000000000000 x23: ffff80001142aa68 x22: ffff800011043d80 x21: ffff00010de46f20 x20: ffff800013c0c520 x19: ffff800011d8f5b0 x18: 0000000000000010 x17: 6e6968207473696c x16: 5f72656d6974203a x15: 6570797420746365 x14: 6a626f2029302065 x13: 303378302f307830 x12: 2b6e665f72656d69 x11: ffff8000124b1560 x10: ffff800012331520 x9 : ffff8000100ca6b0 x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 0000000000000001 x5 : ffff800011d8c000 x4 : ffff800011d8c740 x3 : 0000000000000000 x2 : ffff0001108301c0 x1 : ab3c90eedf9c0f00 x0 : 0000000000000000 Call trace: debug_print_object+0xb8/0x100 __debug_check_no_obj_freed+0x1c0/0x230 debug_check_no_obj_freed+0x20/0x88 slab_free_freelist_hook+0x154/0x1c8 kfree+0x114/0x5d0 sugov_exit+0xbc/0xc0 cpufreq_exit_governor+0x44/0x90 cpufreq_set_policy+0x268/0x4a8 store_scaling_governor+0xe0/0x128 store+0xc0/0xf0 sysfs_kf_write+0x54/0x80 kernfs_fop_write_iter+0x128/0x1c0 new_sync_write+0xf0/0x190 vfs_write+0x2d4/0x478 ksys_write+0x74/0x100 __arm64_sys_write+0x24/0x30 invoke_syscall.constprop.0+0x54/0xe0 do_el0_svc+0x64/0x158 el0_svc+0x2c/0xb0 el0t_64_sync_handler+0xb0/0xb8 el0t_64_sync+0x198/0x19c irq event stamp: 5518 hardirqs last enabled at (5517): [<ffff8000100cbd7c>] console_unlock+0x554/0x6c8 hardirqs last disabled at (5518): [<ffff800010fc0638>] el1_dbg+0x28/0xa0 softirqs last enabled at (5504): [<ffff8000100106e0>] __do_softirq+0x4d0/0x6c0 softirqs last disabled at (5483): [<ffff800010049548>] irq_exit+0x1b0/0x1b8 So split the original sugov_tunables_free() into two functions, sugov_clear_global_tunables() is just used to clear the global_tunables and the new sugov_tunables_free() is used as kobj_type::release to release the sugov_tunables safely. 2024-05-21 not yet calculated CVE-2021-47387
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mac80211: fix use-after-free in CCMP/GCMP RX When PN checking is done in mac80211, for fragmentation we need to copy the PN to the RX struct so we can later use it to do a comparison, since commit bf30ca922a0c (“mac80211: check defrag PN against current frame”). Unfortunately, in that commit I used the ‘hdr’ variable without it being necessarily valid, so use-after-free could occur if it was necessary to reallocate (parts of) the frame. Fix this by reloading the variable after the code that results in the reallocations, if any. This fixes https://bugzilla.kernel.org/show_bug.cgi?id=214401. 2024-05-21 not yet calculated CVE-2021-47388
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: fix missing sev_decommission in sev_receive_start DECOMMISSION the current SEV context if binding an ASID fails after RECEIVE_START. Per AMD’s SEV API, RECEIVE_START generates a new guest context and thus needs to be paired with DECOMMISSION: The RECEIVE_START command is the only command other than the LAUNCH_START command that generates a new guest context and guest handle. The missing DECOMMISSION can result in subsequent SEV launch failures, as the firmware leaks memory and might not able to allocate more SEV guest contexts in the future. Note, LAUNCH_START suffered the same bug, but was previously fixed by commit 934002cd660b (“KVM: SVM: Call SEV Guest Decommission if ASID binding fails”). 2024-05-21 not yet calculated CVE-2021-47389
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Fix stack-out-of-bounds memory access from ioapic_write_indirect() KASAN reports the following issue: BUG: KASAN: stack-out-of-bounds in kvm_make_vcpus_request_mask+0x174/0x440 [kvm] Read of size 8 at addr ffffc9001364f638 by task qemu-kvm/4798 CPU: 0 PID: 4798 Comm: qemu-kvm Tainted: G X ——— — Hardware name: AMD Corporation DAYTONA_X/DAYTONA_X, BIOS RYM0081C 07/13/2020 Call Trace: dump_stack+0xa5/0xe6 print_address_description.constprop.0+0x18/0x130 ? kvm_make_vcpus_request_mask+0x174/0x440 [kvm] __kasan_report.cold+0x7f/0x114 ? kvm_make_vcpus_request_mask+0x174/0x440 [kvm] kasan_report+0x38/0x50 kasan_check_range+0xf5/0x1d0 kvm_make_vcpus_request_mask+0x174/0x440 [kvm] kvm_make_scan_ioapic_request_mask+0x84/0xc0 [kvm] ? kvm_arch_exit+0x110/0x110 [kvm] ? sched_clock+0x5/0x10 ioapic_write_indirect+0x59f/0x9e0 [kvm] ? static_obj+0xc0/0xc0 ? __lock_acquired+0x1d2/0x8c0 ? kvm_ioapic_eoi_inject_work+0x120/0x120 [kvm] The problem appears to be that ‘vcpu_bitmap’ is allocated as a single long on stack and it should really be KVM_MAX_VCPUS long. We also seem to clear the lower 16 bits of it with bitmap_zero() for no particular reason (my guess would be that ‘bitmap’ and ‘vcpu_bitmap’ variables in kvm_bitmap_or_dest_vcpus() caused the confusion: while the later is indeed 16-bit long, the later should accommodate all possible vCPUs). 2024-05-21 not yet calculated CVE-2021-47390
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: RDMA/cma: Ensure rdma_addr_cancel() happens before issuing more requests The FSM can run in a circle allowing rdma_resolve_ip() to be called twice on the same id_priv. While this cannot happen without going through the work, it violates the invariant that the same address resolution background request cannot be active twice. CPU 1 CPU 2 rdma_resolve_addr(): RDMA_CM_IDLE -> RDMA_CM_ADDR_QUERY rdma_resolve_ip(addr_handler) #1 process_one_req(): for #1 addr_handler(): RDMA_CM_ADDR_QUERY -> RDMA_CM_ADDR_BOUND mutex_unlock(&id_priv->handler_mutex); [.. handler still running ..] rdma_resolve_addr(): RDMA_CM_ADDR_BOUND -> RDMA_CM_ADDR_QUERY rdma_resolve_ip(addr_handler) !! two requests are now on the req_list rdma_destroy_id(): destroy_id_handler_unlock(): _destroy_id(): cma_cancel_operation(): rdma_addr_cancel() // process_one_req() self removes it spin_lock_bh(&lock); cancel_delayed_work(&req->work); if (!list_empty(&req->list)) == true ! rdma_addr_cancel() returns after process_on_req #1 is done kfree(id_priv) process_one_req(): for #2 addr_handler(): mutex_lock(&id_priv->handler_mutex); !! Use after free on id_priv rdma_addr_cancel() expects there to be one req on the list and only cancels the first one. The self-removal behavior of the work only happens after the handler has returned. This yields a situations where the req_list can have two reqs for the same “handle” but rdma_addr_cancel() only cancels the first one. The second req remains active beyond rdma_destroy_id() and will use-after-free id_priv once it inevitably triggers. Fix this by remembering if the id_priv has called rdma_resolve_ip() and always cancel before calling it again. This ensures the req_list never gets more than one item in it and doesn’t cost anything in the normal flow that never uses this strange error path. 2024-05-21 not yet calculated CVE-2021-47391
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: RDMA/cma: Fix listener leak in rdma_cma_listen_on_all() failure If cma_listen_on_all() fails it leaves the per-device ID still on the listen_list but the state is not set to RDMA_CM_ADDR_BOUND. When the cmid is eventually destroyed cma_cancel_listens() is not called due to the wrong state, however the per-device IDs are still holding the refcount preventing the ID from being destroyed, thus deadlocking: task:rping state:D stack: 0 pid:19605 ppid: 47036 flags:0x00000084 Call Trace: __schedule+0x29a/0x780 ? free_unref_page_commit+0x9b/0x110 schedule+0x3c/0xa0 schedule_timeout+0x215/0x2b0 ? __flush_work+0x19e/0x1e0 wait_for_completion+0x8d/0xf0 _destroy_id+0x144/0x210 [rdma_cm] ucma_close_id+0x2b/0x40 [rdma_ucm] __destroy_id+0x93/0x2c0 [rdma_ucm] ? __xa_erase+0x4a/0xa0 ucma_destroy_id+0x9a/0x120 [rdma_ucm] ucma_write+0xb8/0x130 [rdma_ucm] vfs_write+0xb4/0x250 ksys_write+0xb5/0xd0 ? syscall_trace_enter.isra.19+0x123/0x190 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Ensure that cma_listen_on_all() atomically unwinds its action under the lock during error. 2024-05-21 not yet calculated CVE-2021-47392
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: hwmon: (mlxreg-fan) Return non-zero value when fan current state is enforced from sysfs Fan speed minimum can be enforced from sysfs. For example, setting current fan speed to 20 is used to enforce fan speed to be at 100% speed, 19 – to be not below 90% speed, etcetera. This feature provides ability to limit fan speed according to some system wise considerations, like absence of some replaceable units or high system ambient temperature. Request for changing fan minimum speed is configuration request and can be set only through ‘sysfs’ write procedure. In this situation value of argument ‘state’ is above nominal fan speed maximum. Return non-zero code in this case to avoid thermal_cooling_device_stats_update() call, because in this case statistics update violates thermal statistics table range. The issues is observed in case kernel is configured with option CONFIG_THERMAL_STATISTICS. Here is the trace from KASAN: [ 159.506659] BUG: KASAN: slab-out-of-bounds in thermal_cooling_device_stats_update+0x7d/0xb0 [ 159.516016] Read of size 4 at addr ffff888116163840 by task hw-management.s/7444 [ 159.545625] Call Trace: [ 159.548366] dump_stack+0x92/0xc1 [ 159.552084] ? thermal_cooling_device_stats_update+0x7d/0xb0 [ 159.635869] thermal_zone_device_update+0x345/0x780 [ 159.688711] thermal_zone_device_set_mode+0x7d/0xc0 [ 159.694174] mlxsw_thermal_modules_init+0x48f/0x590 [mlxsw_core] [ 159.700972] ? mlxsw_thermal_set_cur_state+0x5a0/0x5a0 [mlxsw_core] [ 159.731827] mlxsw_thermal_init+0x763/0x880 [mlxsw_core] [ 160.070233] RIP: 0033:0x7fd995909970 [ 160.074239] Code: 73 01 c3 48 8b 0d 28 d5 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d 99 2d 2c 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d 01 f0 ff .. [ 160.095242] RSP: 002b:00007fff54f5d938 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 160.103722] RAX: ffffffffffffffda RBX: 0000000000000013 RCX: 00007fd995909970 [ 160.111710] RDX: 0000000000000013 RSI: 0000000001906008 RDI: 0000000000000001 [ 160.119699] RBP: 0000000001906008 R08: 00007fd995bc9760 R09: 00007fd996210700 [ 160.127687] R10: 0000000000000073 R11: 0000000000000246 R12: 0000000000000013 [ 160.135673] R13: 0000000000000001 R14: 00007fd995bc8600 R15: 0000000000000013 [ 160.143671] [ 160.145338] Allocated by task 2924: [ 160.149242] kasan_save_stack+0x19/0x40 [ 160.153541] __kasan_kmalloc+0x7f/0xa0 [ 160.157743] __kmalloc+0x1a2/0x2b0 [ 160.161552] thermal_cooling_device_setup_sysfs+0xf9/0x1a0 [ 160.167687] __thermal_cooling_device_register+0x1b5/0x500 [ 160.173833] devm_thermal_of_cooling_device_register+0x60/0xa0 [ 160.180356] mlxreg_fan_probe+0x474/0x5e0 [mlxreg_fan] [ 160.248140] [ 160.249807] The buggy address belongs to the object at ffff888116163400 [ 160.249807] which belongs to the cache kmalloc-1k of size 1024 [ 160.263814] The buggy address is located 64 bytes to the right of [ 160.263814] 1024-byte region [ffff888116163400, ffff888116163800) [ 160.277536] The buggy address belongs to the page: [ 160.282898] page:0000000012275840 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888116167000 pfn:0x116160 [ 160.294872] head:0000000012275840 order:3 compound_mapcount:0 compound_pincount:0 [ 160.303251] flags: 0x200000000010200(slab|head|node=0|zone=2) [ 160.309694] raw: 0200000000010200 ffffea00046f7208 ffffea0004928208 ffff88810004dbc0 [ 160.318367] raw: ffff888116167000 00000000000a0006 00000001ffffffff 0000000000000000 [ 160.327033] page dumped because: kasan: bad access detected [ 160.333270] [ 160.334937] Memory state around the buggy address: [ 160.356469] >ffff888116163800: fc .. 2024-05-21 not yet calculated CVE-2021-47393
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: unlink table before deleting it syzbot reports following UAF: BUG: KASAN: use-after-free in memcmp+0x18f/0x1c0 lib/string.c:955 nla_strcmp+0xf2/0x130 lib/nlattr.c:836 nft_table_lookup.part.0+0x1a2/0x460 net/netfilter/nf_tables_api.c:570 nft_table_lookup net/netfilter/nf_tables_api.c:4064 [inline] nf_tables_getset+0x1b3/0x860 net/netfilter/nf_tables_api.c:4064 nfnetlink_rcv_msg+0x659/0x13f0 net/netfilter/nfnetlink.c:285 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2504 Problem is that all get operations are lockless, so the commit_mutex held by nft_rcv_nl_event() isn’t enough to stop a parallel GET request from doing read-accesses to the table object even after synchronize_rcu(). To avoid this, unlink the table first and store the table objects in on-stack scratch space. 2024-05-21 not yet calculated CVE-2021-47394
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mac80211: limit injected vht mcs/nss in ieee80211_parse_tx_radiotap Limit max values for vht mcs and nss in ieee80211_parse_tx_radiotap routine in order to fix the following warning reported by syzbot: WARNING: CPU: 0 PID: 10717 at include/net/mac80211.h:989 ieee80211_rate_set_vht include/net/mac80211.h:989 [inline] WARNING: CPU: 0 PID: 10717 at include/net/mac80211.h:989 ieee80211_parse_tx_radiotap+0x101e/0x12d0 net/mac80211/tx.c:2244 Modules linked in: CPU: 0 PID: 10717 Comm: syz-executor.5 Not tainted 5.14.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:ieee80211_rate_set_vht include/net/mac80211.h:989 [inline] RIP: 0010:ieee80211_parse_tx_radiotap+0x101e/0x12d0 net/mac80211/tx.c:2244 RSP: 0018:ffffc9000186f3e8 EFLAGS: 00010216 RAX: 0000000000000618 RBX: ffff88804ef76500 RCX: ffffc900143a5000 RDX: 0000000000040000 RSI: ffffffff888f478e RDI: 0000000000000003 RBP: 00000000ffffffff R08: 0000000000000000 R09: 0000000000000100 R10: ffffffff888f46f9 R11: 0000000000000000 R12: 00000000fffffff8 R13: ffff88804ef7653c R14: 0000000000000001 R15: 0000000000000004 FS: 00007fbf5718f700(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b2de23000 CR3: 000000006a671000 CR4: 00000000001506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600 Call Trace: ieee80211_monitor_select_queue+0xa6/0x250 net/mac80211/iface.c:740 netdev_core_pick_tx+0x169/0x2e0 net/core/dev.c:4089 __dev_queue_xmit+0x6f9/0x3710 net/core/dev.c:4165 __bpf_tx_skb net/core/filter.c:2114 [inline] __bpf_redirect_no_mac net/core/filter.c:2139 [inline] __bpf_redirect+0x5ba/0xd20 net/core/filter.c:2162 ____bpf_clone_redirect net/core/filter.c:2429 [inline] bpf_clone_redirect+0x2ae/0x420 net/core/filter.c:2401 bpf_prog_eeb6f53a69e5c6a2+0x59/0x234 bpf_dispatcher_nop_func include/linux/bpf.h:717 [inline] __bpf_prog_run include/linux/filter.h:624 [inline] bpf_prog_run include/linux/filter.h:631 [inline] bpf_test_run+0x381/0xa30 net/bpf/test_run.c:119 bpf_prog_test_run_skb+0xb84/0x1ee0 net/bpf/test_run.c:663 bpf_prog_test_run kernel/bpf/syscall.c:3307 [inline] __sys_bpf+0x2137/0x5df0 kernel/bpf/syscall.c:4605 __do_sys_bpf kernel/bpf/syscall.c:4691 [inline] __se_sys_bpf kernel/bpf/syscall.c:4689 [inline] __x64_sys_bpf+0x75/0xb0 kernel/bpf/syscall.c:4689 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x4665f9 2024-05-21 not yet calculated CVE-2021-47395
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mac80211-hwsim: fix late beacon hrtimer handling Thomas explained in https://lore.kernel.org/r/87mtoeb4hb.ffs@tglx that our handling of the hrtimer here is wrong: If the timer fires late (e.g. due to vCPU scheduling, as reported by Dmitry/syzbot) then it tries to actually rearm the timer at the next deadline, which might be in the past already: 1 2 3 N N+1 | | | … | | ^ intended to fire here (1) ^ next deadline here (2) ^ actually fired here The next time it fires, it’s later, but will still try to schedule for the next deadline (now 3), etc. until it catches up with N, but that might take a long time, causing stalls etc. Now, all of this is simulation, so we just have to fix it, but note that the behaviour is wrong even per spec, since there’s no value then in sending all those beacons unaligned – they should be aligned to the TBTT (1, 2, 3, … in the picture), and if we’re a bit (or a lot) late, then just resume at that point. Therefore, change the code to use hrtimer_forward_now() which will ensure that the next firing of the timer would be at N+1 (in the picture), i.e. the next interval point after the current time. 2024-05-21 not yet calculated CVE-2021-47396
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: sctp: break out if skb_header_pointer returns NULL in sctp_rcv_ootb We should always check if skb_header_pointer’s return is NULL before using it, otherwise it may cause null-ptr-deref, as syzbot reported: KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] RIP: 0010:sctp_rcv_ootb net/sctp/input.c:705 [inline] RIP: 0010:sctp_rcv+0x1d84/0x3220 net/sctp/input.c:196 Call Trace: <IRQ> sctp6_rcv+0x38/0x60 net/sctp/ipv6.c:1109 ip6_protocol_deliver_rcu+0x2e9/0x1ca0 net/ipv6/ip6_input.c:422 ip6_input_finish+0x62/0x170 net/ipv6/ip6_input.c:463 NF_HOOK include/linux/netfilter.h:307 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] ip6_input+0x9c/0xd0 net/ipv6/ip6_input.c:472 dst_input include/net/dst.h:460 [inline] ip6_rcv_finish net/ipv6/ip6_input.c:76 [inline] NF_HOOK include/linux/netfilter.h:307 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] ipv6_rcv+0x28c/0x3c0 net/ipv6/ip6_input.c:297 2024-05-21 not yet calculated CVE-2021-47397
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: RDMA/hfi1: Fix kernel pointer leak Pointers should be printed with %p or %px rather than cast to ‘unsigned long long’ and printed with %llx. Change %llx to %p to print the secured pointer. 2024-05-21 not yet calculated CVE-2021-47398
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ixgbe: Fix NULL pointer dereference in ixgbe_xdp_setup The ixgbe driver currently generates a NULL pointer dereference with some machine (online cpus < 63). This is due to the fact that the maximum value of num_xdp_queues is nr_cpu_ids. Code is in “ixgbe_set_rss_queues””. Here’s how the problem repeats itself: Some machine (online cpus < 63), And user set num_queues to 63 through ethtool. Code is in the “ixgbe_set_channels”, adapter->ring_feature[RING_F_FDIR].limit = count; It becomes 63. When user use xdp, “ixgbe_set_rss_queues” will set queues num. adapter->num_rx_queues = rss_i; adapter->num_tx_queues = rss_i; adapter->num_xdp_queues = ixgbe_xdp_queues(adapter); And rss_i’s value is from f = &adapter->ring_feature[RING_F_FDIR]; rss_i = f->indices = f->limit; So “num_rx_queues” > “num_xdp_queues”, when run to “ixgbe_xdp_setup”, for (i = 0; i < adapter->num_rx_queues; i++) if (adapter->xdp_ring[i]->xsk_umem) It leads to panic. Call trace: [exception RIP: ixgbe_xdp+368] RIP: ffffffffc02a76a0 RSP: ffff9fe16202f8d0 RFLAGS: 00010297 RAX: 0000000000000000 RBX: 0000000000000020 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 000000000000001c RDI: ffffffffa94ead90 RBP: ffff92f8f24c0c18 R8: 0000000000000000 R9: 0000000000000000 R10: ffff9fe16202f830 R11: 0000000000000000 R12: ffff92f8f24c0000 R13: ffff9fe16202fc01 R14: 000000000000000a R15: ffffffffc02a7530 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 7 [ffff9fe16202f8f0] dev_xdp_install at ffffffffa89fbbcc 8 [ffff9fe16202f920] dev_change_xdp_fd at ffffffffa8a08808 9 [ffff9fe16202f960] do_setlink at ffffffffa8a20235 10 [ffff9fe16202fa88] rtnl_setlink at ffffffffa8a20384 11 [ffff9fe16202fc78] rtnetlink_rcv_msg at ffffffffa8a1a8dd 12 [ffff9fe16202fcf0] netlink_rcv_skb at ffffffffa8a717eb 13 [ffff9fe16202fd40] netlink_unicast at ffffffffa8a70f88 14 [ffff9fe16202fd80] netlink_sendmsg at ffffffffa8a71319 15 [ffff9fe16202fdf0] sock_sendmsg at ffffffffa89df290 16 [ffff9fe16202fe08] __sys_sendto at ffffffffa89e19c8 17 [ffff9fe16202ff30] __x64_sys_sendto at ffffffffa89e1a64 18 [ffff9fe16202ff38] do_syscall_64 at ffffffffa84042b9 19 [ffff9fe16202ff50] entry_SYSCALL_64_after_hwframe at ffffffffa8c0008c So I fix ixgbe_max_channels so that it will not allow a setting of queues to be higher than the num_online_cpus(). And when run to ixgbe_xdp_setup, take the smaller value of num_rx_queues and num_xdp_queues. 2024-05-21 not yet calculated CVE-2021-47399
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: hns3: do not allow call hns3_nic_net_open repeatedly hns3_nic_net_open() is not allowed to called repeatly, but there is no checking for this. When doing device reset and setup tc concurrently, there is a small oppotunity to call hns3_nic_net_open repeatedly, and cause kernel bug by calling napi_enable twice. The calltrace information is like below: [ 3078.222780] ————[ cut here ]———— [ 3078.230255] kernel BUG at net/core/dev.c:6991! [ 3078.236224] Internal error: Oops – BUG: 0 [#1] PREEMPT SMP [ 3078.243431] Modules linked in: hns3 hclgevf hclge hnae3 vfio_iommu_type1 vfio_pci vfio_virqfd vfio pv680_mii(O) [ 3078.258880] CPU: 0 PID: 295 Comm: kworker/u8:5 Tainted: G O 5.14.0-rc4+ #1 [ 3078.269102] Hardware name: , BIOS KpxxxFPGA 1P B600 V181 08/12/2021 [ 3078.276801] Workqueue: hclge hclge_service_task [hclge] [ 3078.288774] pstate: 60400009 (nZCv daif +PAN -UAO -TCO BTYPE=–) [ 3078.296168] pc : napi_enable+0x80/0x84 tc qdisc sho[w 3d0e7v8 .e3t0h218 79] lr : hns3_nic_net_open+0x138/0x510 [hns3] [ 3078.314771] sp : ffff8000108abb20 [ 3078.319099] x29: ffff8000108abb20 x28: 0000000000000000 x27: ffff0820a8490300 [ 3078.329121] x26: 0000000000000001 x25: ffff08209cfc6200 x24: 0000000000000000 [ 3078.339044] x23: ffff0820a8490300 x22: ffff08209cd76000 x21: ffff0820abfe3880 [ 3078.349018] x20: 0000000000000000 x19: ffff08209cd76900 x18: 0000000000000000 [ 3078.358620] x17: 0000000000000000 x16: ffffc816e1727a50 x15: 0000ffff8f4ff930 [ 3078.368895] x14: 0000000000000000 x13: 0000000000000000 x12: 0000259e9dbeb6b4 [ 3078.377987] x11: 0096a8f7e764eb40 x10: 634615ad28d3eab5 x9 : ffffc816ad8885b8 [ 3078.387091] x8 : ffff08209cfc6fb8 x7 : ffff0820ac0da058 x6 : ffff0820a8490344 [ 3078.396356] x5 : 0000000000000140 x4 : 0000000000000003 x3 : ffff08209cd76938 [ 3078.405365] x2 : 0000000000000000 x1 : 0000000000000010 x0 : ffff0820abfe38a0 [ 3078.414657] Call trace: [ 3078.418517] napi_enable+0x80/0x84 [ 3078.424626] hns3_reset_notify_up_enet+0x78/0xd0 [hns3] [ 3078.433469] hns3_reset_notify+0x64/0x80 [hns3] [ 3078.441430] hclge_notify_client+0x68/0xb0 [hclge] [ 3078.450511] hclge_reset_rebuild+0x524/0x884 [hclge] [ 3078.458879] hclge_reset_service_task+0x3c4/0x680 [hclge] [ 3078.467470] hclge_service_task+0xb0/0xb54 [hclge] [ 3078.475675] process_one_work+0x1dc/0x48c [ 3078.481888] worker_thread+0x15c/0x464 [ 3078.487104] kthread+0x160/0x170 [ 3078.492479] ret_from_fork+0x10/0x18 [ 3078.498785] Code: c8027c81 35ffffa2 d50323bf d65f03c0 (d4210000) [ 3078.506889] —[ end trace 8ebe0340a1b0fb44 ]— Once hns3_nic_net_open() is excute success, the flag HNS3_NIC_STATE_DOWN will be cleared. So add checking for this flag, directly return when HNS3_NIC_STATE_DOWN is no set. 2024-05-21 not yet calculated CVE-2021-47400
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ipack: ipoctal: fix stack information leak The tty driver name is used also after registering the driver and must specifically not be allocated on the stack to avoid leaking information to user space (or triggering an oops). Drivers should not try to encode topology information in the tty device name but this one snuck in through staging without anyone noticing and another driver has since copied this malpractice. Fixing the ABI is a separate issue, but this at least plugs the security hole. 2024-05-21 not yet calculated CVE-2021-47401
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: sched: flower: protect fl_walk() with rcu Patch that refactored fl_walk() to use idr_for_each_entry_continue_ul() also removed rcu protection of individual filters which causes following use-after-free when filter is deleted concurrently. Fix fl_walk() to obtain rcu read lock while iterating and taking the filter reference and temporary release the lock while calling arg->fn() callback that can sleep. KASAN trace: [ 352.773640] ================================================================== [ 352.775041] BUG: KASAN: use-after-free in fl_walk+0x159/0x240 [cls_flower] [ 352.776304] Read of size 4 at addr ffff8881c8251480 by task tc/2987 [ 352.777862] CPU: 3 PID: 2987 Comm: tc Not tainted 5.15.0-rc2+ #2 [ 352.778980] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 352.781022] Call Trace: [ 352.781573] dump_stack_lvl+0x46/0x5a [ 352.782332] print_address_description.constprop.0+0x1f/0x140 [ 352.783400] ? fl_walk+0x159/0x240 [cls_flower] [ 352.784292] ? fl_walk+0x159/0x240 [cls_flower] [ 352.785138] kasan_report.cold+0x83/0xdf [ 352.785851] ? fl_walk+0x159/0x240 [cls_flower] [ 352.786587] kasan_check_range+0x145/0x1a0 [ 352.787337] fl_walk+0x159/0x240 [cls_flower] [ 352.788163] ? fl_put+0x10/0x10 [cls_flower] [ 352.789007] ? __mutex_unlock_slowpath.constprop.0+0x220/0x220 [ 352.790102] tcf_chain_dump+0x231/0x450 [ 352.790878] ? tcf_chain_tp_delete_empty+0x170/0x170 [ 352.791833] ? __might_sleep+0x2e/0xc0 [ 352.792594] ? tfilter_notify+0x170/0x170 [ 352.793400] ? __mutex_unlock_slowpath.constprop.0+0x220/0x220 [ 352.794477] tc_dump_tfilter+0x385/0x4b0 [ 352.795262] ? tc_new_tfilter+0x1180/0x1180 [ 352.796103] ? __mod_node_page_state+0x1f/0xc0 [ 352.796974] ? __build_skb_around+0x10e/0x130 [ 352.797826] netlink_dump+0x2c0/0x560 [ 352.798563] ? netlink_getsockopt+0x430/0x430 [ 352.799433] ? __mutex_unlock_slowpath.constprop.0+0x220/0x220 [ 352.800542] __netlink_dump_start+0x356/0x440 [ 352.801397] rtnetlink_rcv_msg+0x3ff/0x550 [ 352.802190] ? tc_new_tfilter+0x1180/0x1180 [ 352.802872] ? rtnl_calcit.isra.0+0x1f0/0x1f0 [ 352.803668] ? tc_new_tfilter+0x1180/0x1180 [ 352.804344] ? _copy_from_iter_nocache+0x800/0x800 [ 352.805202] ? kasan_set_track+0x1c/0x30 [ 352.805900] netlink_rcv_skb+0xc6/0x1f0 [ 352.806587] ? rht_deferred_worker+0x6b0/0x6b0 [ 352.807455] ? rtnl_calcit.isra.0+0x1f0/0x1f0 [ 352.808324] ? netlink_ack+0x4d0/0x4d0 [ 352.809086] ? netlink_deliver_tap+0x62/0x3d0 [ 352.809951] netlink_unicast+0x353/0x480 [ 352.810744] ? netlink_attachskb+0x430/0x430 [ 352.811586] ? __alloc_skb+0xd7/0x200 [ 352.812349] netlink_sendmsg+0x396/0x680 [ 352.813132] ? netlink_unicast+0x480/0x480 [ 352.813952] ? __import_iovec+0x192/0x210 [ 352.814759] ? netlink_unicast+0x480/0x480 [ 352.815580] sock_sendmsg+0x6c/0x80 [ 352.816299] ____sys_sendmsg+0x3a5/0x3c0 [ 352.817096] ? kernel_sendmsg+0x30/0x30 [ 352.817873] ? __ia32_sys_recvmmsg+0x150/0x150 [ 352.818753] ___sys_sendmsg+0xd8/0x140 [ 352.819518] ? sendmsg_copy_msghdr+0x110/0x110 [ 352.820402] ? ___sys_recvmsg+0xf4/0x1a0 [ 352.821110] ? __copy_msghdr_from_user+0x260/0x260 [ 352.821934] ? _raw_spin_lock+0x81/0xd0 [ 352.822680] ? __handle_mm_fault+0xef3/0x1b20 [ 352.823549] ? rb_insert_color+0x2a/0x270 [ 352.824373] ? copy_page_range+0x16b0/0x16b0 [ 352.825209] ? perf_event_update_userpage+0x2d0/0x2d0 [ 352.826190] ? __fget_light+0xd9/0xf0 [ 352.826941] __sys_sendmsg+0xb3/0x130 [ 352.827613] ? __sys_sendmsg_sock+0x20/0x20 [ 352.828377] ? do_user_addr_fault+0x2c5/0x8a0 [ 352.829184] ? fpregs_assert_state_consistent+0x52/0x60 [ 352.830001] ? exit_to_user_mode_prepare+0x32/0x160 [ 352.830845] do_syscall_64+0x35/0x80 [ 352.831445] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 352.832331] RIP: 0033:0x7f7bee973c17 [ —truncated— 2024-05-21 not yet calculated CVE-2021-47402
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ipack: ipoctal: fix module reference leak A reference to the carrier module was taken on every open but was only released once when the final reference to the tty struct was dropped. Fix this by taking the module reference and initialising the tty driver data when installing the tty. 2024-05-21 not yet calculated CVE-2021-47403
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: HID: betop: fix slab-out-of-bounds Write in betop_probe Syzbot reported slab-out-of-bounds Write bug in hid-betopff driver. The problem is the driver assumes the device must have an input report but some malicious devices violate this assumption. So this patch checks hid_device’s input is non empty before it’s been used. 2024-05-21 not yet calculated CVE-2021-47404
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: HID: usbhid: free raw_report buffers in usbhid_stop Free the unsent raw_report buffers when the device is removed. Fixes a memory leak reported by syzbot at: https://syzkaller.appspot.com/bug?id=7b4fa7cb1a7c2d3342a2a8a6c53371c8c418ab47 2024-05-21 not yet calculated CVE-2021-47405
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ext4: add error checking to ext4_ext_replay_set_iblocks() If the call to ext4_map_blocks() fails due to an corrupted file system, ext4_ext_replay_set_iblocks() can get stuck in an infinite loop. This could be reproduced by running generic/526 with a file system that has inline_data and fast_commit enabled. The system will repeatedly log to the console: EXT4-fs warning (device dm-3): ext4_block_to_path:105: block 1074800922 > max in inode 131076 and the stack that it gets stuck in is: ext4_block_to_path+0xe3/0x130 ext4_ind_map_blocks+0x93/0x690 ext4_map_blocks+0x100/0x660 skip_hole+0x47/0x70 ext4_ext_replay_set_iblocks+0x223/0x440 ext4_fc_replay_inode+0x29e/0x3b0 ext4_fc_replay+0x278/0x550 do_one_pass+0x646/0xc10 jbd2_journal_recover+0x14a/0x270 jbd2_journal_load+0xc4/0x150 ext4_load_journal+0x1f3/0x490 ext4_fill_super+0x22d4/0x2c00 With this patch, generic/526 still fails, but system is no longer locking up in a tight loop. It’s likely the root casue is that fast_commit replay is corrupting file systems with inline_data, and we probably need to add better error handling in the fast commit replay code path beyond what is done here, which essentially just breaks the infinite loop without reporting the to the higher levels of the code. 2024-05-21 not yet calculated CVE-2021-47406
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Handle SRCU initialization failure during page track init Check the return of init_srcu_struct(), which can fail due to OOM, when initializing the page track mechanism. Lack of checking leads to a NULL pointer deref found by a modified syzkaller. [Move the call towards the beginning of kvm_arch_init_vm. – Paolo] 2024-05-21 not yet calculated CVE-2021-47407
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: netfilter: conntrack: serialize hash resizes and cleanups Syzbot was able to trigger the following warning [1] No repro found by syzbot yet but I was able to trigger similar issue by having 2 scripts running in parallel, changing conntrack hash sizes, and: for j in `seq 1 1000` ; do unshare -n /bin/true >/dev/null ; done It would take more than 5 minutes for net_namespace structures to be cleaned up. This is because nf_ct_iterate_cleanup() has to restart everytime a resize happened. By adding a mutex, we can serialize hash resizes and cleanups and also make get_next_corpse() faster by skipping over empty buckets. Even without resizes in the picture, this patch considerably speeds up network namespace dismantles. [1] INFO: task syz-executor.0:8312 can’t die for more than 144 seconds. task:syz-executor.0 state:R running task stack:25672 pid: 8312 ppid: 6573 flags:0x00004006 Call Trace: context_switch kernel/sched/core.c:4955 [inline] __schedule+0x940/0x26f0 kernel/sched/core.c:6236 preempt_schedule_common+0x45/0xc0 kernel/sched/core.c:6408 preempt_schedule_thunk+0x16/0x18 arch/x86/entry/thunk_64.S:35 __local_bh_enable_ip+0x109/0x120 kernel/softirq.c:390 local_bh_enable include/linux/bottom_half.h:32 [inline] get_next_corpse net/netfilter/nf_conntrack_core.c:2252 [inline] nf_ct_iterate_cleanup+0x15a/0x450 net/netfilter/nf_conntrack_core.c:2275 nf_conntrack_cleanup_net_list+0x14c/0x4f0 net/netfilter/nf_conntrack_core.c:2469 ops_exit_list+0x10d/0x160 net/core/net_namespace.c:171 setup_net+0x639/0xa30 net/core/net_namespace.c:349 copy_net_ns+0x319/0x760 net/core/net_namespace.c:470 create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0xc1/0x1f0 kernel/nsproxy.c:226 ksys_unshare+0x445/0x920 kernel/fork.c:3128 __do_sys_unshare kernel/fork.c:3202 [inline] __se_sys_unshare kernel/fork.c:3200 [inline] __x64_sys_unshare+0x2d/0x40 kernel/fork.c:3200 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f63da68e739 RSP: 002b:00007f63d7c05188 EFLAGS: 00000246 ORIG_RAX: 0000000000000110 RAX: ffffffffffffffda RBX: 00007f63da792f80 RCX: 00007f63da68e739 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000040000000 RBP: 00007f63da6e8cc4 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f63da792f80 R13: 00007fff50b75d3f R14: 00007f63d7c05300 R15: 0000000000022000 Showing all locks held in the system: 1 lock held by khungtaskd/27: #0: ffffffff8b980020 (rcu_read_lock){….}-{1:2}, at: debug_show_all_locks+0x53/0x260 kernel/locking/lockdep.c:6446 2 locks held by kworker/u4:2/153: #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: arch_atomic64_set arch/x86/include/asm/atomic64_64.h:34 [inline] #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: arch_atomic_long_set include/linux/atomic/atomic-long.h:41 [inline] #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: atomic_long_set include/linux/atomic/atomic-instrumented.h:1198 [inline] #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: set_work_data kernel/workqueue.c:634 [inline] #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: set_work_pool_and_clear_pending kernel/workqueue.c:661 [inline] #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x896/0x1690 kernel/workqueue.c:2268 #1: ffffc9000140fdb0 ((kfence_timer).work){+.+.}-{0:0}, at: process_one_work+0x8ca/0x1690 kernel/workqueue.c:2272 1 lock held by systemd-udevd/2970: 1 lock held by in:imklog/6258: #0: ffff88807f970ff0 (&f->f_pos_lock){+.+.}-{3:3}, at: __fdget_pos+0xe9/0x100 fs/file.c:990 3 locks held by kworker/1:6/8158: 1 lock held by syz-executor.0/8312: 2 locks held by kworker/u4:13/9320: 1 lock held by —truncated— 2024-05-21 not yet calculated CVE-2021-47408
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: dwc2: check return value after calling platform_get_resource() It will cause null-ptr-deref if platform_get_resource() returns NULL, we need check the return value. 2024-05-21 not yet calculated CVE-2021-47409
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: fix svm_migrate_fini warning Device manager releases device-specific resources when a driver disconnects from a device, devm_memunmap_pages and devm_release_mem_region calls in svm_migrate_fini are redundant. It causes below warning trace after patch “drm/amdgpu: Split amdgpu_device_fini into early and late”, so remove function svm_migrate_fini. BUG: https://gitlab.freedesktop.org/drm/amd/-/issues/1718 WARNING: CPU: 1 PID: 3646 at drivers/base/devres.c:795 devm_release_action+0x51/0x60 Call Trace: ? memunmap_pages+0x360/0x360 svm_migrate_fini+0x2d/0x60 [amdgpu] kgd2kfd_device_exit+0x23/0xa0 [amdgpu] amdgpu_amdkfd_device_fini_sw+0x1d/0x30 [amdgpu] amdgpu_device_fini_sw+0x45/0x290 [amdgpu] amdgpu_driver_release_kms+0x12/0x30 [amdgpu] drm_dev_release+0x20/0x40 [drm] release_nodes+0x196/0x1e0 device_release_driver_internal+0x104/0x1d0 driver_detach+0x47/0x90 bus_remove_driver+0x7a/0xd0 pci_unregister_driver+0x3d/0x90 amdgpu_exit+0x11/0x20 [amdgpu] 2024-05-21 not yet calculated CVE-2021-47410
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: block: don’t call rq_qos_ops->done_bio if the bio isn’t tracked rq_qos framework is only applied on request based driver, so: 1) rq_qos_done_bio() needn’t to be called for bio based driver 2) rq_qos_done_bio() needn’t to be called for bio which isn’t tracked, such as bios ended from error handling code. Especially in bio_endio(): 1) request queue is referred via bio->bi_bdev->bd_disk->queue, which may be gone since request queue refcount may not be held in above two cases 2) q->rq_qos may be freed in blk_cleanup_queue() when calling into __rq_qos_done_bio() Fix the potential kernel panic by not calling rq_qos_ops->done_bio if the bio isn’t tracked. This way is safe because both ioc_rqos_done_bio() and blkcg_iolatency_done_bio() are nop if the bio isn’t tracked. 2024-05-21 not yet calculated CVE-2021-47412
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: chipidea: ci_hdrc_imx: Also search for ‘phys’ phandle When passing ‘phys’ in the devicetree to describe the USB PHY phandle (which is the recommended way according to Documentation/devicetree/bindings/usb/ci-hdrc-usb2.txt) the following NULL pointer dereference is observed on i.MX7 and i.MX8MM: [ 1.489344] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000098 [ 1.498170] Mem abort info: [ 1.500966] ESR = 0x96000044 [ 1.504030] EC = 0x25: DABT (current EL), IL = 32 bits [ 1.509356] SET = 0, FnV = 0 [ 1.512416] EA = 0, S1PTW = 0 [ 1.515569] FSC = 0x04: level 0 translation fault [ 1.520458] Data abort info: [ 1.523349] ISV = 0, ISS = 0x00000044 [ 1.527196] CM = 0, WnR = 1 [ 1.530176] [0000000000000098] user address but active_mm is swapper [ 1.536544] Internal error: Oops: 96000044 [#1] PREEMPT SMP [ 1.542125] Modules linked in: [ 1.545190] CPU: 3 PID: 7 Comm: kworker/u8:0 Not tainted 5.14.0-dirty #3 [ 1.551901] Hardware name: Kontron i.MX8MM N801X S (DT) [ 1.557133] Workqueue: events_unbound deferred_probe_work_func [ 1.562984] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO BTYPE=–) [ 1.568998] pc : imx7d_charger_detection+0x3f0/0x510 [ 1.573973] lr : imx7d_charger_detection+0x22c/0x510 This happens because the charger functions check for the phy presence inside the imx_usbmisc_data structure (data->usb_phy), but the chipidea core populates the usb_phy passed via ‘phys’ inside ‘struct ci_hdrc’ (ci->usb_phy) instead. This causes the NULL pointer dereference inside imx7d_charger_detection(). Fix it by also searching for ‘phys’ in case ‘fsl,usbphy’ is not found. Tested on a imx7s-warp board. 2024-05-21 not yet calculated CVE-2021-47413
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: riscv: Flush current cpu icache before other cpus On SiFive Unmatched, I recently fell onto the following BUG when booting: [ 0.000000] ftrace: allocating 36610 entries in 144 pages [ 0.000000] Oops – illegal instruction [#1] [ 0.000000] Modules linked in: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 5.13.1+ #5 [ 0.000000] Hardware name: SiFive HiFive Unmatched A00 (DT) [ 0.000000] epc : riscv_cpuid_to_hartid_mask+0x6/0xae [ 0.000000] ra : __sbi_rfence_v02+0xc8/0x10a [ 0.000000] epc : ffffffff80007240 ra : ffffffff80009964 sp : ffffffff81803e10 [ 0.000000] gp : ffffffff81a1ea70 tp : ffffffff8180f500 t0 : ffffffe07fe30000 [ 0.000000] t1 : 0000000000000004 t2 : 0000000000000000 s0 : ffffffff81803e60 [ 0.000000] s1 : 0000000000000000 a0 : ffffffff81a22238 a1 : ffffffff81803e10 [ 0.000000] a2 : 0000000000000000 a3 : 0000000000000000 a4 : 0000000000000000 [ 0.000000] a5 : 0000000000000000 a6 : ffffffff8000989c a7 : 0000000052464e43 [ 0.000000] s2 : ffffffff81a220c8 s3 : 0000000000000000 s4 : 0000000000000000 [ 0.000000] s5 : 0000000000000000 s6 : 0000000200000100 s7 : 0000000000000001 [ 0.000000] s8 : ffffffe07fe04040 s9 : ffffffff81a22c80 s10: 0000000000001000 [ 0.000000] s11: 0000000000000004 t3 : 0000000000000001 t4 : 0000000000000008 [ 0.000000] t5 : ffffffcf04000808 t6 : ffffffe3ffddf188 [ 0.000000] status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000002 [ 0.000000] [<ffffffff80007240>] riscv_cpuid_to_hartid_mask+0x6/0xae [ 0.000000] [<ffffffff80009474>] sbi_remote_fence_i+0x1e/0x26 [ 0.000000] [<ffffffff8000b8f4>] flush_icache_all+0x12/0x1a [ 0.000000] [<ffffffff8000666c>] patch_text_nosync+0x26/0x32 [ 0.000000] [<ffffffff8000884e>] ftrace_init_nop+0x52/0x8c [ 0.000000] [<ffffffff800f051e>] ftrace_process_locs.isra.0+0x29c/0x360 [ 0.000000] [<ffffffff80a0e3c6>] ftrace_init+0x80/0x130 [ 0.000000] [<ffffffff80a00f8c>] start_kernel+0x5c4/0x8f6 [ 0.000000] —[ end trace f67eb9af4d8d492b ]— [ 0.000000] Kernel panic – not syncing: Attempted to kill the idle task! [ 0.000000] —[ end Kernel panic – not syncing: Attempted to kill the idle task! ]— While ftrace is looping over a list of addresses to patch, it always failed when patching the same function: riscv_cpuid_to_hartid_mask. Looking at the backtrace, the illegal instruction is encountered in this same function. However, patch_text_nosync, after patching the instructions, calls flush_icache_range. But looking at what happens in this function: flush_icache_range -> flush_icache_all -> sbi_remote_fence_i -> __sbi_rfence_v02 -> riscv_cpuid_to_hartid_mask The icache and dcache of the current cpu are never synchronized between the patching of riscv_cpuid_to_hartid_mask and calling this same function. So fix this by flushing the current cpu’s icache before asking for the other cpus to do the same. 2024-05-21 not yet calculated CVE-2021-47414
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: iwlwifi: mvm: Fix possible NULL dereference In __iwl_mvm_remove_time_event() check that ‘te_data->vif’ is NULL before dereferencing it. 2024-05-21 not yet calculated CVE-2021-47415
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: phy: mdio: fix memory leak Syzbot reported memory leak in MDIO bus interface, the problem was in wrong state logic. MDIOBUS_ALLOCATED indicates 2 states: 1. Bus is only allocated 2. Bus allocated and __mdiobus_register() fails, but device_register() was called In case of device_register() has been called we should call put_device() to correctly free the memory allocated for this device, but mdiobus_free() calls just kfree(dev) in case of MDIOBUS_ALLOCATED state To avoid this behaviour we need to set bus->state to MDIOBUS_UNREGISTERED _before_ calling device_register(), because put_device() should be called even in case of device_register() failure. 2024-05-21 not yet calculated CVE-2021-47416
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: libbpf: Fix memory leak in strset Free struct strset itself, not just its internal parts. 2024-05-21 not yet calculated CVE-2021-47417
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net_sched: fix NULL deref in fifo_set_limit() syzbot reported another NULL deref in fifo_set_limit() [1] I could repro the issue with : unshare -n tc qd add dev lo root handle 1:0 tbf limit 200000 burst 70000 rate 100Mbit tc qd replace dev lo parent 1:0 pfifo_fast tc qd change dev lo root handle 1:0 tbf limit 300000 burst 70000 rate 100Mbit pfifo_fast does not have a change() operation. Make fifo_set_limit() more robust about this. [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 1cf99067 P4D 1cf99067 PUD 7ca49067 PMD 0 Oops: 0010 [#1] PREEMPT SMP KASAN CPU: 1 PID: 14443 Comm: syz-executor959 Not tainted 5.15.0-rc3-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:0x0 Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6. RSP: 0018:ffffc9000e2f7310 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: ffffffff8d6ecc00 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff888024c27910 RDI: ffff888071e34000 RBP: ffff888071e34000 R08: 0000000000000001 R09: ffffffff8fcfb947 R10: 0000000000000001 R11: 0000000000000000 R12: ffff888024c27910 R13: ffff888071e34018 R14: 0000000000000000 R15: ffff88801ef74800 FS: 00007f321d897700(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffffffffd6 CR3: 00000000722c3000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: fifo_set_limit net/sched/sch_fifo.c:242 [inline] fifo_set_limit+0x198/0x210 net/sched/sch_fifo.c:227 tbf_change+0x6ec/0x16d0 net/sched/sch_tbf.c:418 qdisc_change net/sched/sch_api.c:1332 [inline] tc_modify_qdisc+0xd9a/0x1a60 net/sched/sch_api.c:1634 rtnetlink_rcv_msg+0x413/0xb80 net/core/rtnetlink.c:5572 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2504 netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline] netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1340 netlink_sendmsg+0x86d/0xdb0 net/netlink/af_netlink.c:1929 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2409 ___sys_sendmsg+0xf3/0x170 net/socket.c:2463 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2492 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae 2024-05-21 not yet calculated CVE-2021-47418
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_taprio: properly cancel timer from taprio_destroy() There is a comment in qdisc_create() about us not calling ops->reset() in some cases. err_out4: /* * Any broken qdiscs that would require a ops->reset() here? * The qdisc was never in action so it shouldn’t be necessary. */ As taprio sets a timer before actually receiving a packet, we need to cancel it from ops->destroy, just in case ops->reset has not been called. syzbot reported: ODEBUG: free active (active state 0) object type: hrtimer hint: advance_sched+0x0/0x9a0 arch/x86/include/asm/atomic64_64.h:22 WARNING: CPU: 0 PID: 8441 at lib/debugobjects.c:505 debug_print_object+0x16e/0x250 lib/debugobjects.c:505 Modules linked in: CPU: 0 PID: 8441 Comm: syz-executor813 Not tainted 5.14.0-rc6-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:debug_print_object+0x16e/0x250 lib/debugobjects.c:505 Code: ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 af 00 00 00 48 8b 14 dd e0 d3 e3 89 4c 89 ee 48 c7 c7 e0 c7 e3 89 e8 5b 86 11 05 <0f> 0b 83 05 85 03 92 09 01 48 83 c4 18 5b 5d 41 5c 41 5d 41 5e c3 RSP: 0018:ffffc9000130f330 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000 RDX: ffff88802baeb880 RSI: ffffffff815d87b5 RDI: fffff52000261e58 RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000 R10: ffffffff815d25ee R11: 0000000000000000 R12: ffffffff898dd020 R13: ffffffff89e3ce20 R14: ffffffff81653630 R15: dffffc0000000000 FS: 0000000000f0d300(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffb64b3e000 CR3: 0000000036557000 CR4: 00000000001506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __debug_check_no_obj_freed lib/debugobjects.c:987 [inline] debug_check_no_obj_freed+0x301/0x420 lib/debugobjects.c:1018 slab_free_hook mm/slub.c:1603 [inline] slab_free_freelist_hook+0x171/0x240 mm/slub.c:1653 slab_free mm/slub.c:3213 [inline] kfree+0xe4/0x540 mm/slub.c:4267 qdisc_create+0xbcf/0x1320 net/sched/sch_api.c:1299 tc_modify_qdisc+0x4c8/0x1a60 net/sched/sch_api.c:1663 rtnetlink_rcv_msg+0x413/0xb80 net/core/rtnetlink.c:5571 netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2504 netlink_unicast_kernel net/netlink/af_netlink.c:1314 [inline] netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1340 netlink_sendmsg+0x86d/0xdb0 net/netlink/af_netlink.c:1929 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2403 ___sys_sendmsg+0xf3/0x170 net/socket.c:2457 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2486 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 2024-05-21 not yet calculated CVE-2021-47419
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: fix a potential ttm->sg memory leak Memory is allocated for ttm->sg by kmalloc in kfd_mem_dmamap_userptr, but isn’t freed by kfree in kfd_mem_dmaunmap_userptr. Free it! 2024-05-21 not yet calculated CVE-2021-47420
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: handle the case of pci_channel_io_frozen only in amdgpu_pci_resume In current code, when a PCI error state pci_channel_io_normal is detectd, it will report PCI_ERS_RESULT_CAN_RECOVER status to PCI driver, and PCI driver will continue the execution of PCI resume callback report_resume by pci_walk_bridge, and the callback will go into amdgpu_pci_resume finally, where write lock is releasd unconditionally without acquiring such lock first. In this case, a deadlock will happen when other threads start to acquire the read lock. To fix this, add a member in amdgpu_device strucutre to cache pci_channel_state, and only continue the execution in amdgpu_pci_resume when it’s pci_channel_io_frozen. 2024-05-21 not yet calculated CVE-2021-47421
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau/kms/nv50-: fix file release memory leak When using single_open() for opening, single_release() should be called, otherwise the ‘op’ allocated in single_open() will be leaked. 2024-05-21 not yet calculated CVE-2021-47422
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau/debugfs: fix file release memory leak When using single_open() for opening, single_release() should be called, otherwise the ‘op’ allocated in single_open() will be leaked. 2024-05-21 not yet calculated CVE-2021-47423
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix freeing of uninitialized misc IRQ vector When VSI set up failed in i40e_probe() as part of PF switch set up driver was trying to free misc IRQ vectors in i40e_clear_interrupt_scheme and produced a kernel Oops: Trying to free already-free IRQ 266 WARNING: CPU: 0 PID: 5 at kernel/irq/manage.c:1731 __free_irq+0x9a/0x300 Workqueue: events work_for_cpu_fn RIP: 0010:__free_irq+0x9a/0x300 Call Trace: ? synchronize_irq+0x3a/0xa0 free_irq+0x2e/0x60 i40e_clear_interrupt_scheme+0x53/0x190 [i40e] i40e_probe.part.108+0x134b/0x1a40 [i40e] ? kmem_cache_alloc+0x158/0x1c0 ? acpi_ut_update_ref_count.part.1+0x8e/0x345 ? acpi_ut_update_object_reference+0x15e/0x1e2 ? strstr+0x21/0x70 ? irq_get_irq_data+0xa/0x20 ? mp_check_pin_attr+0x13/0xc0 ? irq_get_irq_data+0xa/0x20 ? mp_map_pin_to_irq+0xd3/0x2f0 ? acpi_register_gsi_ioapic+0x93/0x170 ? pci_conf1_read+0xa4/0x100 ? pci_bus_read_config_word+0x49/0x70 ? do_pci_enable_device+0xcc/0x100 local_pci_probe+0x41/0x90 work_for_cpu_fn+0x16/0x20 process_one_work+0x1a7/0x360 worker_thread+0x1cf/0x390 ? create_worker+0x1a0/0x1a0 kthread+0x112/0x130 ? kthread_flush_work_fn+0x10/0x10 ret_from_fork+0x1f/0x40 The problem is that at that point misc IRQ vectors were not allocated yet and we get a call trace that driver is trying to free already free IRQ vectors. Add a check in i40e_clear_interrupt_scheme for __I40E_MISC_IRQ_REQUESTED PF state before calling i40e_free_misc_vector. This state is set only if misc IRQ vectors were properly initialized. 2024-05-21 not yet calculated CVE-2021-47424
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: i2c: acpi: fix resource leak in reconfiguration device addition acpi_i2c_find_adapter_by_handle() calls bus_find_device() which takes a reference on the adapter which is never released which will result in a reference count leak and render the adapter unremovable. Make sure to put the adapter after creating the client in the same manner that we do for OF. [wsa: fixed title] 2024-05-21 not yet calculated CVE-2021-47425
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: bpf, s390: Fix potential memory leak about jit_data Make sure to free jit_data through kfree() in the error path. 2024-05-21 not yet calculated CVE-2021-47426
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: scsi: iscsi: Fix iscsi_task use after free Commit d39df158518c (“scsi: iscsi: Have abort handler get ref to conn”) added iscsi_get_conn()/iscsi_put_conn() calls during abort handling but then also changed the handling of the case where we detect an already completed task where we now end up doing a goto to the common put/cleanup code. This results in a iscsi_task use after free, because the common cleanup code will do a put on the iscsi_task. This reverts the goto and moves the iscsi_get_conn() to after we’ve checked if the iscsi_task is valid. 2024-05-21 not yet calculated CVE-2021-47427
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s: fix program check interrupt emergency stack path Emergency stack path was jumping into a 3: label inside the __GEN_COMMON_BODY macro for the normal path after it had finished, rather than jumping over it. By a small miracle this is the correct place to build up a new interrupt frame with the existing stack pointer, so things basically worked okay with an added weird looking 700 trap frame on top (which had the wrong ->nip so it didn’t decode bug messages either). Fix this by avoiding using numeric labels when jumping over non-trivial macros. Before: LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: CPU: 0 PID: 88 Comm: sh Not tainted 5.15.0-rc2-00034-ge057cdade6e5 #2637 NIP: 7265677368657265 LR: c00000000006c0c8 CTR: c0000000000097f0 REGS: c0000000fffb3a50 TRAP: 0700 Not tainted MSR: 9000000000021031 <SF,HV,ME,IR,DR,LE> CR: 00000700 XER: 20040000 CFAR: c0000000000098b0 IRQMASK: 0 GPR00: c00000000006c964 c0000000fffb3cf0 c000000001513800 0000000000000000 GPR04: 0000000048ab0778 0000000042000000 0000000000000000 0000000000001299 GPR08: 000001e447c718ec 0000000022424282 0000000000002710 c00000000006bee8 GPR12: 9000000000009033 c0000000016b0000 00000000000000b0 0000000000000001 GPR16: 0000000000000000 0000000000000002 0000000000000000 0000000000000ff8 GPR20: 0000000000001fff 0000000000000007 0000000000000080 00007fff89d90158 GPR24: 0000000002000000 0000000002000000 0000000000000255 0000000000000300 GPR28: c000000001270000 0000000042000000 0000000048ab0778 c000000080647e80 NIP [7265677368657265] 0x7265677368657265 LR [c00000000006c0c8] ___do_page_fault+0x3f8/0xb10 Call Trace: [c0000000fffb3cf0] [c00000000000bdac] soft_nmi_common+0x13c/0x1d0 (unreliable) — interrupt: 700 at decrementer_common_virt+0xb8/0x230 NIP: c0000000000098b8 LR: c00000000006c0c8 CTR: c0000000000097f0 REGS: c0000000fffb3d60 TRAP: 0700 Not tainted MSR: 9000000000021031 <SF,HV,ME,IR,DR,LE> CR: 22424282 XER: 20040000 CFAR: c0000000000098b0 IRQMASK: 0 GPR00: c00000000006c964 0000000000002400 c000000001513800 0000000000000000 GPR04: 0000000048ab0778 0000000042000000 0000000000000000 0000000000001299 GPR08: 000001e447c718ec 0000000022424282 0000000000002710 c00000000006bee8 GPR12: 9000000000009033 c0000000016b0000 00000000000000b0 0000000000000001 GPR16: 0000000000000000 0000000000000002 0000000000000000 0000000000000ff8 GPR20: 0000000000001fff 0000000000000007 0000000000000080 00007fff89d90158 GPR24: 0000000002000000 0000000002000000 0000000000000255 0000000000000300 GPR28: c000000001270000 0000000042000000 0000000048ab0778 c000000080647e80 NIP [c0000000000098b8] decrementer_common_virt+0xb8/0x230 LR [c00000000006c0c8] ___do_page_fault+0x3f8/0xb10 — interrupt: 700 Instruction dump: XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX —[ end trace 6d28218e0cc3c949 ]— After: ————[ cut here ]———— kernel BUG at arch/powerpc/kernel/exceptions-64s.S:491! Oops: Exception in kernel mode, sig: 5 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: CPU: 0 PID: 88 Comm: login Not tainted 5.15.0-rc2-00034-ge057cdade6e5-dirty #2638 NIP: c0000000000098b8 LR: c00000000006bf04 CTR: c0000000000097f0 REGS: c0000000fffb3d60 TRAP: 0700 Not tainted MSR: 9000000000021031 <SF,HV,ME,IR,DR,LE> CR: 24482227 XER: 00040000 CFAR: c0000000000098b0 IRQMASK: 0 GPR00: c00000000006bf04 0000000000002400 c000000001513800 c000000001271868 GPR04: 00000000100f0d29 0000000042000000 0000000000000007 0000000000000009 GPR08: 00000000100f0d29 0000000024482227 0000000000002710 c000000000181b3c GPR12: 9000000000009033 c0000000016b0000 00000000100f0d29 c000000005b22f00 GPR16: 00000000ffff0000 0000000000000001 0000000000000009 00000000100eed90 GPR20: 00000000100eed90 00000 —truncated— 2024-05-21 not yet calculated CVE-2021-47428
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s: Fix unrecoverable MCE calling async handler from NMI The machine check handler is not considered NMI on 64s. The early handler is the true NMI handler, and then it schedules the machine_check_exception handler to run when interrupts are enabled. This works fine except the case of an unrecoverable MCE, where the true NMI is taken when MSR[RI] is clear, it can not recover, so it calls machine_check_exception directly so something might be done about it. Calling an async handler from NMI context can result in irq state and other things getting corrupted. This can also trigger the BUG at arch/powerpc/include/asm/interrupt.h:168 BUG_ON(!arch_irq_disabled_regs(regs) && !(regs->msr & MSR_EE)); Fix this by making an _async version of the handler which is called in the normal case, and a NMI version that is called for unrecoverable interrupts. 2024-05-21 not yet calculated CVE-2021-47429
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: x86/entry: Clear X86_FEATURE_SMAP when CONFIG_X86_SMAP=n Commit 3c73b81a9164 (“x86/entry, selftests: Further improve user entry sanity checks”) added a warning if AC is set when in the kernel. Commit 662a0221893a3d (“x86/entry: Fix AC assertion”) changed the warning to only fire if the CPU supports SMAP. However, the warning can still trigger on a machine that supports SMAP but where it’s disabled in the kernel config and when running the syscall_nt selftest, for example: ————[ cut here ]———— WARNING: CPU: 0 PID: 49 at irqentry_enter_from_user_mode CPU: 0 PID: 49 Comm: init Tainted: G T 5.15.0-rc4+ #98 e6202628ee053b4f310759978284bd8bb0ce6905 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 RIP: 0010:irqentry_enter_from_user_mode … Call Trace: ? irqentry_enter ? exc_general_protection ? asm_exc_general_protection ? asm_exc_general_protectio IS_ENABLED(CONFIG_X86_SMAP) could be added to the warning condition, but even this would not be enough in case SMAP is disabled at boot time with the “nosmap” parameter. To be consistent with “nosmap” behaviour, clear X86_FEATURE_SMAP when !CONFIG_X86_SMAP. Found using entry-fuzz + satrandconfig. [ bp: Massage commit message. ] 2024-05-21 not yet calculated CVE-2021-47430
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix gart.bo pin_count leak gmc_v{9,10}_0_gart_disable() isn’t called matched with correspoding gart_enbale function in SRIOV case. This will lead to gart.bo pin_count leak on driver unload. 2024-05-21 not yet calculated CVE-2021-47431
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: lib/generic-radix-tree.c: Don’t overflow in peek() When we started spreading new inode numbers throughout most of the 64 bit inode space, that triggered some corner case bugs, in particular some integer overflows related to the radix tree code. Oops. 2024-05-21 not yet calculated CVE-2021-47432
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix abort logic in btrfs_replace_file_extents Error injection testing uncovered a case where we’d end up with a corrupt file system with a missing extent in the middle of a file. This occurs because the if statement to decide if we should abort is wrong. The only way we would abort in this case is if we got a ret != -EOPNOTSUPP and we called from the file clone code. However the prealloc code uses this path too. Instead we need to abort if there is an error, and the only error we _don’t_ abort on is -EOPNOTSUPP and only if we came from the clone file code. 2024-05-22 not yet calculated CVE-2021-47433
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: xhci: Fix command ring pointer corruption while aborting a command The command ring pointer is located at [6:63] bits of the command ring control register (CRCR). All the control bits like command stop, abort are located at [0:3] bits. While aborting a command, we read the CRCR and set the abort bit and write to the CRCR. The read will always give command ring pointer as all zeros. So we essentially write only the control bits. Since we split the 64 bit write into two 32 bit writes, there is a possibility of xHC command ring stopped before the upper dword (all zeros) is written. If that happens, xHC updates the upper dword of its internal command ring pointer with all zeros. Next time, when the command ring is restarted, we see xHC memory access failures. Fix this issue by only writing to the lower dword of CRCR where all control bits are located. 2024-05-22 not yet calculated CVE-2021-47434
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: dm: fix mempool NULL pointer race when completing IO dm_io_dec_pending() calls end_io_acct() first and will then dec md in-flight pending count. But if a task is swapping DM table at same time this can result in a crash due to mempool->elements being NULL: task1 task2 do_resume ->do_suspend ->dm_wait_for_completion bio_endio ->clone_endio ->dm_io_dec_pending ->end_io_acct ->wakeup task1 ->dm_swap_table ->__bind ->__bind_mempools ->bioset_exit ->mempool_exit ->free_io [ 67.330330] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 …… [ 67.330494] pstate: 80400085 (Nzcv daIf +PAN -UAO) [ 67.330510] pc : mempool_free+0x70/0xa0 [ 67.330515] lr : mempool_free+0x4c/0xa0 [ 67.330520] sp : ffffff8008013b20 [ 67.330524] x29: ffffff8008013b20 x28: 0000000000000004 [ 67.330530] x27: ffffffa8c2ff40a0 x26: 00000000ffff1cc8 [ 67.330535] x25: 0000000000000000 x24: ffffffdada34c800 [ 67.330541] x23: 0000000000000000 x22: ffffffdada34c800 [ 67.330547] x21: 00000000ffff1cc8 x20: ffffffd9a1304d80 [ 67.330552] x19: ffffffdada34c970 x18: 000000b312625d9c [ 67.330558] x17: 00000000002dcfbf x16: 00000000000006dd [ 67.330563] x15: 000000000093b41e x14: 0000000000000010 [ 67.330569] x13: 0000000000007f7a x12: 0000000034155555 [ 67.330574] x11: 0000000000000001 x10: 0000000000000001 [ 67.330579] x9 : 0000000000000000 x8 : 0000000000000000 [ 67.330585] x7 : 0000000000000000 x6 : ffffff80148b5c1a [ 67.330590] x5 : ffffff8008013ae0 x4 : 0000000000000001 [ 67.330596] x3 : ffffff80080139c8 x2 : ffffff801083bab8 [ 67.330601] x1 : 0000000000000000 x0 : ffffffdada34c970 [ 67.330609] Call trace: [ 67.330616] mempool_free+0x70/0xa0 [ 67.330627] bio_put+0xf8/0x110 [ 67.330638] dec_pending+0x13c/0x230 [ 67.330644] clone_endio+0x90/0x180 [ 67.330649] bio_endio+0x198/0x1b8 [ 67.330655] dec_pending+0x190/0x230 [ 67.330660] clone_endio+0x90/0x180 [ 67.330665] bio_endio+0x198/0x1b8 [ 67.330673] blk_update_request+0x214/0x428 [ 67.330683] scsi_end_request+0x2c/0x300 [ 67.330688] scsi_io_completion+0xa0/0x710 [ 67.330695] scsi_finish_command+0xd8/0x110 [ 67.330700] scsi_softirq_done+0x114/0x148 [ 67.330708] blk_done_softirq+0x74/0xd0 [ 67.330716] __do_softirq+0x18c/0x374 [ 67.330724] irq_exit+0xb4/0xb8 [ 67.330732] __handle_domain_irq+0x84/0xc0 [ 67.330737] gic_handle_irq+0x148/0x1b0 [ 67.330744] el1_irq+0xe8/0x190 [ 67.330753] lpm_cpuidle_enter+0x4f8/0x538 [ 67.330759] cpuidle_enter_state+0x1fc/0x398 [ 67.330764] cpuidle_enter+0x18/0x20 [ 67.330772] do_idle+0x1b4/0x290 [ 67.330778] cpu_startup_entry+0x20/0x28 [ 67.330786] secondary_start_kernel+0x160/0x170 Fix this by: 1) Establishing pointers to ‘struct dm_io’ members in dm_io_dec_pending() so that they may be passed into end_io_acct() _after_ free_io() is called. 2) Moving end_io_acct() after free_io(). 2024-05-22 not yet calculated CVE-2021-47435
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: usb: musb: dsps: Fix the probe error path Commit 7c75bde329d7 (“usb: musb: musb_dsps: request_irq() after initializing musb”) has inverted the calls to dsps_setup_optional_vbus_irq() and dsps_create_musb_pdev() without updating correctly the error path. dsps_create_musb_pdev() allocates and registers a new platform device which must be unregistered and freed with platform_device_unregister(), and this is missing upon dsps_setup_optional_vbus_irq() error. While on the master branch it seems not to trigger any issue, I observed a kernel crash because of a NULL pointer dereference with a v5.10.70 stable kernel where the patch mentioned above was backported. With this kernel version, -EPROBE_DEFER is returned the first time dsps_setup_optional_vbus_irq() is called which triggers the probe to error out without unregistering the platform device. Unfortunately, on the Beagle Bone Black Wireless, the platform device still living in the system is being used by the USB Ethernet gadget driver, which during the boot phase triggers the crash. My limited knowledge of the musb world prevents me to revert this commit which was sent to silence a robot warning which, as far as I understand, does not make sense. The goal of this patch was to prevent an IRQ to fire before the platform device being registered. I think this cannot ever happen due to the fact that enabling the interrupts is done by the ->enable() callback of the platform musb device, and this platform device must be already registered in order for the core or any other user to use this callback. Hence, I decided to fix the error path, which might prevent future errors on mainline kernels while also fixing older ones. 2024-05-22 not yet calculated CVE-2021-47436
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: iio: adis16475: fix deadlock on frequency set With commit 39c024b51b560 (“iio: adis16475: improve sync scale mode handling”), two deadlocks were introduced: 1) The call to ‘adis_write_reg_16()’ was not changed to it’s unlocked version. 2) The lock was not being released on the success path of the function. This change fixes both these issues. 2024-05-22 not yet calculated CVE-2021-47437
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix memory leak in mlx5_core_destroy_cq() error path Prior to this patch in case mlx5_core_destroy_cq() failed it returns without completing all destroy operations and that leads to memory leak. Instead, complete the destroy flow before return error. Also move mlx5_debug_cq_remove() to the beginning of mlx5_core_destroy_cq() to be symmetrical with mlx5_core_create_cq(). kmemleak complains on: unreferenced object 0xc000000038625100 (size 64): comm “ethtool”, pid 28301, jiffies 4298062946 (age 785.380s) hex dump (first 32 bytes): 60 01 48 94 00 00 00 c0 b8 05 34 c3 00 00 00 c0 `.H…….4….. 02 00 00 00 00 00 00 00 00 db 7d c1 00 00 00 c0 ……….}….. backtrace: [<000000009e8643cb>] add_res_tree+0xd0/0x270 [mlx5_core] [<00000000e7cb8e6c>] mlx5_debug_cq_add+0x5c/0xc0 [mlx5_core] [<000000002a12918f>] mlx5_core_create_cq+0x1d0/0x2d0 [mlx5_core] [<00000000cef0a696>] mlx5e_create_cq+0x210/0x3f0 [mlx5_core] [<000000009c642c26>] mlx5e_open_cq+0xb4/0x130 [mlx5_core] [<0000000058dfa578>] mlx5e_ptp_open+0x7f4/0xe10 [mlx5_core] [<0000000081839561>] mlx5e_open_channels+0x9cc/0x13e0 [mlx5_core] [<0000000009cf05d4>] mlx5e_switch_priv_channels+0xa4/0x230 [mlx5_core] [<0000000042bbedd8>] mlx5e_safe_switch_params+0x14c/0x300 [mlx5_core] [<0000000004bc9db8>] set_pflag_tx_port_ts+0x9c/0x160 [mlx5_core] [<00000000a0553443>] mlx5e_set_priv_flags+0xd0/0x1b0 [mlx5_core] [<00000000a8f3d84b>] ethnl_set_privflags+0x234/0x2d0 [<00000000fd27f27c>] genl_family_rcv_msg_doit+0x108/0x1d0 [<00000000f495e2bb>] genl_family_rcv_msg+0xe4/0x1f0 [<00000000646c5c2c>] genl_rcv_msg+0x78/0x120 [<00000000d53e384e>] netlink_rcv_skb+0x74/0x1a0 2024-05-22 not yet calculated CVE-2021-47438
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: dsa: microchip: Added the condition for scheduling ksz_mib_read_work When the ksz module is installed and removed using rmmod, kernel crashes with null pointer dereferrence error. During rmmod, ksz_switch_remove function tries to cancel the mib_read_workqueue using cancel_delayed_work_sync routine and unregister switch from dsa. During dsa_unregister_switch it calls ksz_mac_link_down, which in turn reschedules the workqueue since mib_interval is non-zero. Due to which queue executed after mib_interval and it tries to access dp->slave. But the slave is unregistered in the ksz_switch_remove function. Hence kernel crashes. To avoid this crash, before canceling the workqueue, resetted the mib_interval to 0. v1 -> v2: -Removed the if condition in ksz_mib_read_work 2024-05-22 not yet calculated CVE-2021-47439
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: encx24j600: check error in devm_regmap_init_encx24j600 devm_regmap_init may return error which caused by like out of memory, this will results in null pointer dereference later when reading or writing register: general protection fault in encx24j600_spi_probe KASAN: null-ptr-deref in range [0x0000000000000090-0x0000000000000097] CPU: 0 PID: 286 Comm: spi-encx24j600- Not tainted 5.15.0-rc2-00142-g9978db750e31-dirty #11 9c53a778c1306b1b02359f3c2bbedc0222cba652 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:regcache_cache_bypass drivers/base/regmap/regcache.c:540 Code: 54 41 89 f4 55 53 48 89 fb 48 83 ec 08 e8 26 94 a8 fe 48 8d bb a0 00 00 00 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 4a 03 00 00 4c 8d ab b0 00 00 00 48 8b ab a0 00 RSP: 0018:ffffc900010476b8 EFLAGS: 00010207 RAX: dffffc0000000000 RBX: fffffffffffffff4 RCX: 0000000000000000 RDX: 0000000000000012 RSI: ffff888002de0000 RDI: 0000000000000094 RBP: ffff888013c9a000 R08: 0000000000000000 R09: fffffbfff3f9cc6a R10: ffffc900010476e8 R11: fffffbfff3f9cc69 R12: 0000000000000001 R13: 000000000000000a R14: ffff888013c9af54 R15: ffff888013c9ad08 FS: 00007ffa984ab580(0000) GS:ffff88801fe00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055a6384136c8 CR3: 000000003bbe6003 CR4: 0000000000770ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: encx24j600_spi_probe drivers/net/ethernet/microchip/encx24j600.c:459 spi_probe drivers/spi/spi.c:397 really_probe drivers/base/dd.c:517 __driver_probe_device drivers/base/dd.c:751 driver_probe_device drivers/base/dd.c:782 __device_attach_driver drivers/base/dd.c:899 bus_for_each_drv drivers/base/bus.c:427 __device_attach drivers/base/dd.c:971 bus_probe_device drivers/base/bus.c:487 device_add drivers/base/core.c:3364 __spi_add_device drivers/spi/spi.c:599 spi_add_device drivers/spi/spi.c:641 spi_new_device drivers/spi/spi.c:717 new_device_store+0x18c/0x1f1 [spi_stub 4e02719357f1ff33f5a43d00630982840568e85e] dev_attr_store drivers/base/core.c:2074 sysfs_kf_write fs/sysfs/file.c:139 kernfs_fop_write_iter fs/kernfs/file.c:300 new_sync_write fs/read_write.c:508 (discriminator 4) vfs_write fs/read_write.c:594 ksys_write fs/read_write.c:648 do_syscall_64 arch/x86/entry/common.c:50 entry_SYSCALL_64_after_hwframe arch/x86/entry/entry_64.S:113 Add error check in devm_regmap_init_encx24j600 to avoid this situation. 2024-05-22 not yet calculated CVE-2021-47440
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mlxsw: thermal: Fix out-of-bounds memory accesses Currently, mlxsw allows cooling states to be set above the maximum cooling state supported by the driver: # cat /sys/class/thermal/thermal_zone2/cdev0/type mlxsw_fan # cat /sys/class/thermal/thermal_zone2/cdev0/max_state 10 # echo 18 > /sys/class/thermal/thermal_zone2/cdev0/cur_state # echo $? 0 This results in out-of-bounds memory accesses when thermal state transition statistics are enabled (CONFIG_THERMAL_STATISTICS=y), as the transition table is accessed with a too large index (state) [1]. According to the thermal maintainer, it is the responsibility of the driver to reject such operations [2]. Therefore, return an error when the state to be set exceeds the maximum cooling state supported by the driver. To avoid dead code, as suggested by the thermal maintainer [3], partially revert commit a421ce088ac8 (“mlxsw: core: Extend cooling device with cooling levels”) that tried to interpret these invalid cooling states (above the maximum) in a special way. The cooling levels array is not removed in order to prevent the fans going below 20% PWM, which would cause them to get stuck at 0% PWM. [1] BUG: KASAN: slab-out-of-bounds in thermal_cooling_device_stats_update+0x271/0x290 Read of size 4 at addr ffff8881052f7bf8 by task kworker/0:0/5 CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.15.0-rc3-custom-45935-gce1adf704b14 #122 Hardware name: Mellanox Technologies Ltd. “MSN2410-CB2FO”/”SA000874”, BIOS 4.6.5 03/08/2016 Workqueue: events_freezable_power_ thermal_zone_device_check Call Trace: dump_stack_lvl+0x8b/0xb3 print_address_description.constprop.0+0x1f/0x140 kasan_report.cold+0x7f/0x11b thermal_cooling_device_stats_update+0x271/0x290 __thermal_cdev_update+0x15e/0x4e0 thermal_cdev_update+0x9f/0xe0 step_wise_throttle+0x770/0xee0 thermal_zone_device_update+0x3f6/0xdf0 process_one_work+0xa42/0x1770 worker_thread+0x62f/0x13e0 kthread+0x3ee/0x4e0 ret_from_fork+0x1f/0x30 Allocated by task 1: kasan_save_stack+0x1b/0x40 __kasan_kmalloc+0x7c/0x90 thermal_cooling_device_setup_sysfs+0x153/0x2c0 __thermal_cooling_device_register.part.0+0x25b/0x9c0 thermal_cooling_device_register+0xb3/0x100 mlxsw_thermal_init+0x5c5/0x7e0 __mlxsw_core_bus_device_register+0xcb3/0x19c0 mlxsw_core_bus_device_register+0x56/0xb0 mlxsw_pci_probe+0x54f/0x710 local_pci_probe+0xc6/0x170 pci_device_probe+0x2b2/0x4d0 really_probe+0x293/0xd10 __driver_probe_device+0x2af/0x440 driver_probe_device+0x51/0x1e0 __driver_attach+0x21b/0x530 bus_for_each_dev+0x14c/0x1d0 bus_add_driver+0x3ac/0x650 driver_register+0x241/0x3d0 mlxsw_sp_module_init+0xa2/0x174 do_one_initcall+0xee/0x5f0 kernel_init_freeable+0x45a/0x4de kernel_init+0x1f/0x210 ret_from_fork+0x1f/0x30 The buggy address belongs to the object at ffff8881052f7800 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 1016 bytes inside of 1024-byte region [ffff8881052f7800, ffff8881052f7c00) The buggy address belongs to the page: page:0000000052355272 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1052f0 head:0000000052355272 order:3 compound_mapcount:0 compound_pincount:0 flags: 0x200000000010200(slab|head|node=0|zone=2) raw: 0200000000010200 ffffea0005034800 0000000300000003 ffff888100041dc0 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8881052f7a80: 00 00 00 00 00 00 04 fc fc fc fc fc fc fc fc fc ffff8881052f7b00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff8881052f7b80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff8881052f7c00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff8881052f7c80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [2] https://lore.kernel.org/linux-pm/9aca37cb-1629-5c67- —truncated— 2024-05-22 not yet calculated CVE-2021-47441
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: NFC: digital: fix possible memory leak in digital_in_send_sdd_req() ‘skb’ is allocated in digital_in_send_sdd_req(), but not free when digital_in_send_cmd() failed, which will cause memory leak. Fix it by freeing ‘skb’ if digital_in_send_cmd() return failed. 2024-05-22 not yet calculated CVE-2021-47442
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: NFC: digital: fix possible memory leak in digital_tg_listen_mdaa() ‘params’ is allocated in digital_tg_listen_mdaa(), but not free when digital_send_cmd() failed, which will cause memory leak. Fix it by freeing ‘params’ if digital_send_cmd() return failed. 2024-05-22 not yet calculated CVE-2021-47443
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/edid: In connector_bad_edid() cap num_of_ext by num_blocks read In commit e11f5bd8228f (“drm: Add support for DP 1.4 Compliance edid corruption test”) the function connector_bad_edid() started assuming that the memory for the EDID passed to it was big enough to hold `edid[0x7e] + 1` blocks of data (1 extra for the base block). It completely ignored the fact that the function was passed `num_blocks` which indicated how much memory had been allocated for the EDID. Let’s fix this by adding a bounds check. This is important for handling the case where there’s an error in the first block of the EDID. In that case we will call connector_bad_edid() without having re-allocated memory based on `edid[0x7e]`. 2024-05-22 not yet calculated CVE-2021-47444
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/msm: Fix null pointer dereference on pointer edp The initialization of pointer dev dereferences pointer edp before edp is null checked, so there is a potential null pointer deference issue. Fix this by only dereferencing edp after edp has been null checked. Addresses-Coverity: (“Dereference before null check”) 2024-05-22 not yet calculated CVE-2021-47445
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/msm/a4xx: fix error handling in a4xx_gpu_init() This code returns 1 on error instead of a negative error. It leads to an Oops in the caller. A second problem is that the check for “if (ret != -ENODATA)” cannot be true because “ret” is set to 1. 2024-05-22 not yet calculated CVE-2021-47446
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm/msm/a3xx: fix error handling in a3xx_gpu_init() These error paths returned 1 on failure, instead of a negative error code. This would lead to an Oops in the caller. A second problem is that the check for “if (ret != -ENODATA)” did not work because “ret” was set to 1. 2024-05-22 not yet calculated CVE-2021-47447
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix possible stall on recvmsg() recvmsg() can enter an infinite loop if the caller provides the MSG_WAITALL, the data present in the receive queue is not sufficient to fulfill the request, and no more data is received by the peer. When the above happens, mptcp_wait_data() will always return with no wait, as the MPTCP_DATA_READY flag checked by such function is set and never cleared in such code path. Leveraging the above syzbot was able to trigger an RCU stall: rcu: INFO: rcu_preempt self-detected stall on CPU rcu: 0-…!: (10499 ticks this GP) idle=0af/1/0x4000000000000000 softirq=10678/10678 fqs=1 (t=10500 jiffies g=13089 q=109) rcu: rcu_preempt kthread starved for 10497 jiffies! g13089 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x0 ->cpu=1 rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior. rcu: RCU grace-period kthread stack dump: task:rcu_preempt state:R running task stack:28696 pid: 14 ppid: 2 flags:0x00004000 Call Trace: context_switch kernel/sched/core.c:4955 [inline] __schedule+0x940/0x26f0 kernel/sched/core.c:6236 schedule+0xd3/0x270 kernel/sched/core.c:6315 schedule_timeout+0x14a/0x2a0 kernel/time/timer.c:1881 rcu_gp_fqs_loop+0x186/0x810 kernel/rcu/tree.c:1955 rcu_gp_kthread+0x1de/0x320 kernel/rcu/tree.c:2128 kthread+0x405/0x4f0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 rcu: Stack dump where RCU GP kthread last ran: Sending NMI from CPU 0 to CPUs 1: NMI backtrace for cpu 1 CPU: 1 PID: 8510 Comm: syz-executor827 Not tainted 5.15.0-rc2-next-20210920-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:bytes_is_nonzero mm/kasan/generic.c:84 [inline] RIP: 0010:memory_is_nonzero mm/kasan/generic.c:102 [inline] RIP: 0010:memory_is_poisoned_n mm/kasan/generic.c:128 [inline] RIP: 0010:memory_is_poisoned mm/kasan/generic.c:159 [inline] RIP: 0010:check_region_inline mm/kasan/generic.c:180 [inline] RIP: 0010:kasan_check_range+0xc8/0x180 mm/kasan/generic.c:189 Code: 38 00 74 ed 48 8d 50 08 eb 09 48 83 c0 01 48 39 d0 74 7a 80 38 00 74 f2 48 89 c2 b8 01 00 00 00 48 85 d2 75 56 5b 5d 41 5c c3 <48> 85 d2 74 5e 48 01 ea eb 09 48 83 c0 01 48 39 d0 74 50 80 38 00 RSP: 0018:ffffc9000cd676c8 EFLAGS: 00000283 RAX: ffffed100e9a110e RBX: ffffed100e9a110f RCX: ffffffff88ea062a RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffff888074d08870 RBP: ffffed100e9a110e R08: 0000000000000001 R09: ffff888074d08877 R10: ffffed100e9a110e R11: 0000000000000000 R12: ffff888074d08000 R13: ffff888074d08000 R14: ffff888074d08088 R15: ffff888074d08000 FS: 0000555556d8e300(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000 S: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000180 CR3: 0000000068909000 CR4: 00000000001506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: instrument_atomic_read_write include/linux/instrumented.h:101 [inline] test_and_clear_bit include/asm-generic/bitops/instrumented-atomic.h:83 [inline] mptcp_release_cb+0x14a/0x210 net/mptcp/protocol.c:3016 release_sock+0xb4/0x1b0 net/core/sock.c:3204 mptcp_wait_data net/mptcp/protocol.c:1770 [inline] mptcp_recvmsg+0xfd1/0x27b0 net/mptcp/protocol.c:2080 inet6_recvmsg+0x11b/0x5e0 net/ipv6/af_inet6.c:659 sock_recvmsg_nosec net/socket.c:944 [inline] ____sys_recvmsg+0x527/0x600 net/socket.c:2626 ___sys_recvmsg+0x127/0x200 net/socket.c:2670 do_recvmmsg+0x24d/0x6d0 net/socket.c:2764 __sys_recvmmsg net/socket.c:2843 [inline] __do_sys_recvmmsg net/socket.c:2866 [inline] __se_sys_recvmmsg net/socket.c:2859 [inline] __x64_sys_recvmmsg+0x20b/0x260 net/socket.c:2859 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc200d2 —truncated— 2024-05-22 not yet calculated CVE-2021-47448
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ice: fix locking for Tx timestamp tracking flush Commit 4dd0d5c33c3e (“ice: add lock around Tx timestamp tracker flush”) added a lock around the Tx timestamp tracker flow which is used to cleanup any left over SKBs and prepare for device removal. This lock is problematic because it is being held around a call to ice_clear_phy_tstamp. The clear function takes a mutex to send a PHY write command to firmware. This could lead to a deadlock if the mutex actually sleeps, and causes the following warning on a kernel with preemption debugging enabled: [ 715.419426] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:573 [ 715.427900] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 3100, name: rmmod [ 715.435652] INFO: lockdep is turned off. [ 715.439591] Preemption disabled at: [ 715.439594] [<0000000000000000>] 0x0 [ 715.446678] CPU: 52 PID: 3100 Comm: rmmod Tainted: G W OE 5.15.0-rc4+ #42 bdd7ec3018e725f159ca0d372ce8c2c0e784891c [ 715.458058] Hardware name: Intel Corporation S2600STQ/S2600STQ, BIOS SE5C620.86B.02.01.0010.010620200716 01/06/2020 [ 715.468483] Call Trace: [ 715.470940] dump_stack_lvl+0x6a/0x9a [ 715.474613] ___might_sleep.cold+0x224/0x26a [ 715.478895] __mutex_lock+0xb3/0x1440 [ 715.482569] ? stack_depot_save+0x378/0x500 [ 715.486763] ? ice_sq_send_cmd+0x78/0x14c0 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.494979] ? kfree+0xc1/0x520 [ 715.498128] ? mutex_lock_io_nested+0x12a0/0x12a0 [ 715.502837] ? kasan_set_free_info+0x20/0x30 [ 715.507110] ? __kasan_slab_free+0x10b/0x140 [ 715.511385] ? slab_free_freelist_hook+0xc7/0x220 [ 715.516092] ? kfree+0xc1/0x520 [ 715.519235] ? ice_deinit_lag+0x16c/0x220 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.527359] ? ice_remove+0x1cf/0x6a0 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.535133] ? pci_device_remove+0xab/0x1d0 [ 715.539318] ? __device_release_driver+0x35b/0x690 [ 715.544110] ? driver_detach+0x214/0x2f0 [ 715.548035] ? bus_remove_driver+0x11d/0x2f0 [ 715.552309] ? pci_unregister_driver+0x26/0x250 [ 715.556840] ? ice_module_exit+0xc/0x2f [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.564799] ? __do_sys_delete_module.constprop.0+0x2d8/0x4e0 [ 715.570554] ? do_syscall_64+0x3b/0x90 [ 715.574303] ? entry_SYSCALL_64_after_hwframe+0x44/0xae [ 715.579529] ? start_flush_work+0x542/0x8f0 [ 715.583719] ? ice_sq_send_cmd+0x78/0x14c0 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.591923] ice_sq_send_cmd+0x78/0x14c0 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.599960] ? wait_for_completion_io+0x250/0x250 [ 715.604662] ? lock_acquire+0x196/0x200 [ 715.608504] ? do_raw_spin_trylock+0xa5/0x160 [ 715.612864] ice_sbq_rw_reg+0x1e6/0x2f0 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.620813] ? ice_reset+0x130/0x130 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.628497] ? __debug_check_no_obj_freed+0x1e8/0x3c0 [ 715.633550] ? trace_hardirqs_on+0x1c/0x130 [ 715.637748] ice_write_phy_reg_e810+0x70/0xf0 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.646220] ? do_raw_spin_trylock+0xa5/0x160 [ 715.650581] ? ice_ptp_release+0x910/0x910 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.658797] ? ice_ptp_release+0x255/0x910 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.667013] ice_clear_phy_tstamp+0x2c/0x110 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.675403] ice_ptp_release+0x408/0x910 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.683440] ice_remove+0x560/0x6a0 [ice 9a7e1ec00971c89ecd3fe0d4dc7da2b3786a421d] [ 715.691037] ? _raw_spin_unlock_irqrestore+0x46/0x73 [ 715.696005] pci_device_remove+0xab/0x1d0 [ 715.700018] __device_release_driver+0x35b/0x690 [ 715.704637] driver_detach+0x214/0x2f0 [ 715.708389] bus_remove_driver+0x11d/0x2f0 [ 715.712489] pci_unregister_driver+0x26/0x250 [ 71 —truncated— 2024-05-22 not yet calculated CVE-2021-47449
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Fix host stage-2 PGD refcount The KVM page-table library refcounts the pages of concatenated stage-2 PGDs individually. However, when running KVM in protected mode, the host’s stage-2 PGD is currently managed by EL2 as a single high-order compound page, which can cause the refcount of the tail pages to reach 0 when they shouldn’t, hence corrupting the page-table. Fix this by introducing a new hyp_split_page() helper in the EL2 page allocator (matching the kernel’s split_page() function), and make use of it from host_s2_zalloc_pages_exact(). 2024-05-22 not yet calculated CVE-2021-47450
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: netfilter: xt_IDLETIMER: fix panic that occurs when timer_type has garbage value Currently, when the rule related to IDLETIMER is added, idletimer_tg timer structure is initialized by kmalloc on executing idletimer_tg_create function. However, in this process timer->timer_type is not defined to a specific value. Thus, timer->timer_type has garbage value and it occurs kernel panic. So, this commit fixes the panic by initializing timer->timer_type using kzalloc instead of kmalloc. Test commands: # iptables -A OUTPUT -j IDLETIMER –timeout 1 –label test $ cat /sys/class/xt_idletimer/timers/test Killed Splat looks like: BUG: KASAN: user-memory-access in alarm_expires_remaining+0x49/0x70 Read of size 8 at addr 0000002e8c7bc4c8 by task cat/917 CPU: 12 PID: 917 Comm: cat Not tainted 5.14.0+ #3 79940a339f71eb14fc81aee1757a20d5bf13eb0e Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: dump_stack_lvl+0x6e/0x9c kasan_report.cold+0x112/0x117 ? alarm_expires_remaining+0x49/0x70 __asan_load8+0x86/0xb0 alarm_expires_remaining+0x49/0x70 idletimer_tg_show+0xe5/0x19b [xt_IDLETIMER 11219304af9316a21bee5ba9d58f76a6b9bccc6d] dev_attr_show+0x3c/0x60 sysfs_kf_seq_show+0x11d/0x1f0 ? device_remove_bin_file+0x20/0x20 kernfs_seq_show+0xa4/0xb0 seq_read_iter+0x29c/0x750 kernfs_fop_read_iter+0x25a/0x2c0 ? __fsnotify_parent+0x3d1/0x570 ? iov_iter_init+0x70/0x90 new_sync_read+0x2a7/0x3d0 ? __x64_sys_llseek+0x230/0x230 ? rw_verify_area+0x81/0x150 vfs_read+0x17b/0x240 ksys_read+0xd9/0x180 ? vfs_write+0x460/0x460 ? do_syscall_64+0x16/0xc0 ? lockdep_hardirqs_on+0x79/0x120 __x64_sys_read+0x43/0x50 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f0cdc819142 Code: c0 e9 c2 fe ff ff 50 48 8d 3d 3a ca 0a 00 e8 f5 19 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 ec 28 48 89 54 24 RSP: 002b:00007fff28eee5b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f0cdc819142 RDX: 0000000000020000 RSI: 00007f0cdc032000 RDI: 0000000000000003 RBP: 00007f0cdc032000 R08: 00007f0cdc031010 R09: 0000000000000000 R10: 0000000000000022 R11: 0000000000000246 R12: 00005607e9ee31f0 R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000 2024-05-22 not yet calculated CVE-2021-47451
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: skip netdev events generated on netns removal syzbot reported following (harmless) WARN: WARNING: CPU: 1 PID: 2648 at net/netfilter/core.c:468 nft_netdev_unregister_hooks net/netfilter/nf_tables_api.c:230 [inline] nf_tables_unregister_hook include/net/netfilter/nf_tables.h:1090 [inline] __nft_release_basechain+0x138/0x640 net/netfilter/nf_tables_api.c:9524 nft_netdev_event net/netfilter/nft_chain_filter.c:351 [inline] nf_tables_netdev_event+0x521/0x8a0 net/netfilter/nft_chain_filter.c:382 reproducer: unshare -n bash -c ‘ip link add br0 type bridge; nft add table netdev t ; nft add chain netdev t ingress { type filter hook ingress device “br0” priority 0; policy drop; }’ Problem is that when netns device exit hooks create the UNREGISTER event, the .pre_exit hook for nf_tables core has already removed the base hook. Notifier attempts to do this again. The need to do base hook unregister unconditionally was needed in the past, because notifier was last stage where reg->dev dereference was safe. Now that nf_tables does the hook removal in .pre_exit, this isn’t needed anymore. 2024-05-22 not yet calculated CVE-2021-47452
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ice: Avoid crash from unnecessary IDA free In the remove path, there is an attempt to free the aux_idx IDA whether it was allocated or not. This can potentially cause a crash when unloading the driver on systems that do not initialize support for RDMA. But, this free cannot be gated by the status bit for RDMA, since it is allocated if the driver detects support for RDMA at probe time, but the driver can enter into a state where RDMA is not supported after the IDA has been allocated at probe time and this would lead to a memory leak. Initialize aux_idx to an invalid value and check for a valid value when unloading to determine if an IDA free is necessary. 2024-05-22 not yet calculated CVE-2021-47453
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: powerpc/smp: do not decrement idle task preempt count in CPU offline With PREEMPT_COUNT=y, when a CPU is offlined and then onlined again, we get: BUG: scheduling while atomic: swapper/1/0/0x00000000 no locks held by swapper/1/0. CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.15.0-rc2+ #100 Call Trace: dump_stack_lvl+0xac/0x108 __schedule_bug+0xac/0xe0 __schedule+0xcf8/0x10d0 schedule_idle+0x3c/0x70 do_idle+0x2d8/0x4a0 cpu_startup_entry+0x38/0x40 start_secondary+0x2ec/0x3a0 start_secondary_prolog+0x10/0x14 This is because powerpc’s arch_cpu_idle_dead() decrements the idle task’s preempt count, for reasons explained in commit a7c2bb8279d2 (“powerpc: Re-enable preemption before cpu_die()”), specifically “start_secondary() expects a preempt_count() of 0.” However, since commit 2c669ef6979c (“powerpc/preempt: Don’t touch the idle task’s preempt_count during hotplug”) and commit f1a0a376ca0c (“sched/core: Initialize the idle task with preemption disabled”), that justification no longer holds. The idle task isn’t supposed to re-enable preemption, so remove the vestigial preempt_enable() from the CPU offline path. Tested with pseries and powernv in qemu, and pseries on PowerVM. 2024-05-22 not yet calculated CVE-2021-47454
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ptp: Fix possible memory leak in ptp_clock_register() I got memory leak as follows when doing fault injection test: unreferenced object 0xffff88800906c618 (size 8): comm “i2c-idt82p33931”, pid 4421, jiffies 4294948083 (age 13.188s) hex dump (first 8 bytes): 70 74 70 30 00 00 00 00 ptp0…. backtrace: [<00000000312ed458>] __kmalloc_track_caller+0x19f/0x3a0 [<0000000079f6e2ff>] kvasprintf+0xb5/0x150 [<0000000026aae54f>] kvasprintf_const+0x60/0x190 [<00000000f323a5f7>] kobject_set_name_vargs+0x56/0x150 [<000000004e35abdd>] dev_set_name+0xc0/0x100 [<00000000f20cfe25>] ptp_clock_register+0x9f4/0xd30 [ptp] [<000000008bb9f0de>] idt82p33_probe.cold+0x8b6/0x1561 [ptp_idt82p33] When posix_clock_register() returns an error, the name allocated in dev_set_name() will be leaked, the put_device() should be used to give up the device reference, then the name will be freed in kobject_cleanup() and other memory will be freed in ptp_clock_release(). 2024-05-22 not yet calculated CVE-2021-47455
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: can: peak_pci: peak_pci_remove(): fix UAF When remove the module peek_pci, referencing ‘chan’ again after releasing ‘dev’ will cause UAF. Fix this by releasing ‘dev’ later. The following log reveals it: [ 35.961814 ] BUG: KASAN: use-after-free in peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.963414 ] Read of size 8 at addr ffff888136998ee8 by task modprobe/5537 [ 35.965513 ] Call Trace: [ 35.965718 ] dump_stack_lvl+0xa8/0xd1 [ 35.966028 ] print_address_description+0x87/0x3b0 [ 35.966420 ] kasan_report+0x172/0x1c0 [ 35.966725 ] ? peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.967137 ] ? trace_irq_enable_rcuidle+0x10/0x170 [ 35.967529 ] ? peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.967945 ] __asan_report_load8_noabort+0x14/0x20 [ 35.968346 ] peak_pci_remove+0x16f/0x270 [peak_pci] [ 35.968752 ] pci_device_remove+0xa9/0x250 2024-05-22 not yet calculated CVE-2021-47456
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: can: isotp: isotp_sendmsg(): add result check for wait_event_interruptible() Using wait_event_interruptible() to wait for complete transmission, but do not check the result of wait_event_interruptible() which can be interrupted. It will result in TX buffer has multiple accessors and the later process interferes with the previous process. Following is one of the problems reported by syzbot. ============================================================= WARNING: CPU: 0 PID: 0 at net/can/isotp.c:840 isotp_tx_timer_handler+0x2e0/0x4c0 CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.13.0-rc7+ #68 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 RIP: 0010:isotp_tx_timer_handler+0x2e0/0x4c0 Call Trace: <IRQ> ? isotp_setsockopt+0x390/0x390 __hrtimer_run_queues+0xb8/0x610 hrtimer_run_softirq+0x91/0xd0 ? rcu_read_lock_sched_held+0x4d/0x80 __do_softirq+0xe8/0x553 irq_exit_rcu+0xf8/0x100 sysvec_apic_timer_interrupt+0x9e/0xc0 </IRQ> asm_sysvec_apic_timer_interrupt+0x12/0x20 Add result check for wait_event_interruptible() in isotp_sendmsg() to avoid multiple accessers for tx buffer. 2024-05-22 not yet calculated CVE-2021-47457
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ocfs2: mount fails with buffer overflow in strlen Starting with kernel 5.11 built with CONFIG_FORTIFY_SOURCE mouting an ocfs2 filesystem with either o2cb or pcmk cluster stack fails with the trace below. Problem seems to be that strings for cluster stack and cluster name are not guaranteed to be null terminated in the disk representation, while strlcpy assumes that the source string is always null terminated. This causes a read outside of the source string triggering the buffer overflow detection. detected buffer overflow in strlen ————[ cut here ]———— kernel BUG at lib/string.c:1149! invalid opcode: 0000 [#1] SMP PTI CPU: 1 PID: 910 Comm: mount.ocfs2 Not tainted 5.14.0-1-amd64 #1 Debian 5.14.6-2 RIP: 0010:fortify_panic+0xf/0x11 … Call Trace: ocfs2_initialize_super.isra.0.cold+0xc/0x18 [ocfs2] ocfs2_fill_super+0x359/0x19b0 [ocfs2] mount_bdev+0x185/0x1b0 legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 path_mount+0x454/0xa20 __x64_sys_mount+0x103/0x140 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae 2024-05-22 not yet calculated CVE-2021-47458
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: can: j1939: j1939_netdev_start(): fix UAF for rx_kref of j1939_priv It will trigger UAF for rx_kref of j1939_priv as following. cpu0 cpu1 j1939_sk_bind(socket0, ndev0, …) j1939_netdev_start j1939_sk_bind(socket1, ndev0, …) j1939_netdev_start j1939_priv_set j1939_priv_get_by_ndev_locked j1939_jsk_add ….. j1939_netdev_stop kref_put_lock(&priv->rx_kref, …) kref_get(&priv->rx_kref, …) REFCOUNT_WARN(“addition on 0;…”) ==================================================== refcount_t: addition on 0; use-after-free. WARNING: CPU: 1 PID: 20874 at lib/refcount.c:25 refcount_warn_saturate+0x169/0x1e0 RIP: 0010:refcount_warn_saturate+0x169/0x1e0 Call Trace: j1939_netdev_start+0x68b/0x920 j1939_sk_bind+0x426/0xeb0 ? security_socket_bind+0x83/0xb0 The rx_kref’s kref_get() and kref_put() should use j1939_netdev_lock to protect. 2024-05-22 not yet calculated CVE-2021-47459
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix data corruption after conversion from inline format Commit 6dbf7bb55598 (“fs: Don’t invalidate page buffers in block_write_full_page()”) uncovered a latent bug in ocfs2 conversion from inline inode format to a normal inode format. The code in ocfs2_convert_inline_data_to_extents() attempts to zero out the whole cluster allocated for file data by grabbing, zeroing, and dirtying all pages covering this cluster. However these pages are beyond i_size, thus writeback code generally ignores these dirty pages and no blocks were ever actually zeroed on the disk. This oversight was fixed by commit 693c241a5f6a (“ocfs2: No need to zero pages past i_size.”) for standard ocfs2 write path, inline conversion path was apparently forgotten; the commit log also has a reasoning why the zeroing actually is not needed. After commit 6dbf7bb55598, things became worse as writeback code stopped invalidating buffers on pages beyond i_size and thus these pages end up with clean PageDirty bit but with buffers attached to these pages being still dirty. So when a file is converted from inline format, then writeback triggers, and then the file is grown so that these pages become valid, the invalid dirtiness state is preserved, mark_buffer_dirty() does nothing on these pages (buffers are already dirty) but page is never written back because it is clean. So data written to these pages is lost once pages are reclaimed. Simple reproducer for the problem is: xfs_io -f -c “pwrite 0 2000” -c “pwrite 2000 2000” -c “fsync” -c “pwrite 4000 2000” ocfs2_file After unmounting and mounting the fs again, you can observe that end of ‘ocfs2_file’ has lost its contents. Fix the problem by not doing the pointless zeroing during conversion from inline format similarly as in the standard write path. [[email protected]: fix whitespace, per Joseph] 2024-05-22 not yet calculated CVE-2021-47460
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: userfaultfd: fix a race between writeprotect and exit_mmap() A race is possible when a process exits, its VMAs are removed by exit_mmap() and at the same time userfaultfd_writeprotect() is called. The race was detected by KASAN on a development kernel, but it appears to be possible on vanilla kernels as well. Use mmget_not_zero() to prevent the race as done in other userfaultfd operations. 2024-05-22 not yet calculated CVE-2021-47461
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mm/mempolicy: do not allow illegal MPOL_F_NUMA_BALANCING | MPOL_LOCAL in mbind() syzbot reported access to unitialized memory in mbind() [1] Issue came with commit bda420b98505 (“numa balancing: migrate on fault among multiple bound nodes”) This commit added a new bit in MPOL_MODE_FLAGS, but only checked valid combination (MPOL_F_NUMA_BALANCING can only be used with MPOL_BIND) in do_set_mempolicy() This patch moves the check in sanitize_mpol_flags() so that it is also used by mbind() [1] BUG: KMSAN: uninit-value in __mpol_equal+0x567/0x590 mm/mempolicy.c:2260 __mpol_equal+0x567/0x590 mm/mempolicy.c:2260 mpol_equal include/linux/mempolicy.h:105 [inline] vma_merge+0x4a1/0x1e60 mm/mmap.c:1190 mbind_range+0xcc8/0x1e80 mm/mempolicy.c:811 do_mbind+0xf42/0x15f0 mm/mempolicy.c:1333 kernel_mbind mm/mempolicy.c:1483 [inline] __do_sys_mbind mm/mempolicy.c:1490 [inline] __se_sys_mbind+0x437/0xb80 mm/mempolicy.c:1486 __x64_sys_mbind+0x19d/0x200 mm/mempolicy.c:1486 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x44/0xae Uninit was created at: slab_alloc_node mm/slub.c:3221 [inline] slab_alloc mm/slub.c:3230 [inline] kmem_cache_alloc+0x751/0xff0 mm/slub.c:3235 mpol_new mm/mempolicy.c:293 [inline] do_mbind+0x912/0x15f0 mm/mempolicy.c:1289 kernel_mbind mm/mempolicy.c:1483 [inline] __do_sys_mbind mm/mempolicy.c:1490 [inline] __se_sys_mbind+0x437/0xb80 mm/mempolicy.c:1486 __x64_sys_mbind+0x19d/0x200 mm/mempolicy.c:1486 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x44/0xae ===================================================== Kernel panic – not syncing: panic_on_kmsan set … CPU: 0 PID: 15049 Comm: syz-executor.0 Tainted: G B 5.15.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1ff/0x28e lib/dump_stack.c:106 dump_stack+0x25/0x28 lib/dump_stack.c:113 panic+0x44f/0xdeb kernel/panic.c:232 kmsan_report+0x2ee/0x300 mm/kmsan/report.c:186 __msan_warning+0xd7/0x150 mm/kmsan/instrumentation.c:208 __mpol_equal+0x567/0x590 mm/mempolicy.c:2260 mpol_equal include/linux/mempolicy.h:105 [inline] vma_merge+0x4a1/0x1e60 mm/mmap.c:1190 mbind_range+0xcc8/0x1e80 mm/mempolicy.c:811 do_mbind+0xf42/0x15f0 mm/mempolicy.c:1333 kernel_mbind mm/mempolicy.c:1483 [inline] __do_sys_mbind mm/mempolicy.c:1490 [inline] __se_sys_mbind+0x437/0xb80 mm/mempolicy.c:1486 __x64_sys_mbind+0x19d/0x200 mm/mempolicy.c:1486 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x44/0xae 2024-05-22 not yet calculated CVE-2021-47462
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mm/secretmem: fix NULL page->mapping dereference in page_is_secretmem() Check for a NULL page->mapping before dereferencing the mapping in page_is_secretmem(), as the page’s mapping can be nullified while gup() is running, e.g. by reclaim or truncation. BUG: kernel NULL pointer dereference, address: 0000000000000068 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) – not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 6 PID: 4173897 Comm: CPU 3/KVM Tainted: G W RIP: 0010:internal_get_user_pages_fast+0x621/0x9d0 Code: <48> 81 7a 68 80 08 04 bc 0f 85 21 ff ff 8 89 c7 be RSP: 0018:ffffaa90087679b0 EFLAGS: 00010046 RAX: ffffe3f37905b900 RBX: 00007f2dd561e000 RCX: ffffe3f37905b934 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffe3f37905b900 … CR2: 0000000000000068 CR3: 00000004c5898003 CR4: 00000000001726e0 Call Trace: get_user_pages_fast_only+0x13/0x20 hva_to_pfn+0xa9/0x3e0 try_async_pf+0xa1/0x270 direct_page_fault+0x113/0xad0 kvm_mmu_page_fault+0x69/0x680 vmx_handle_exit+0xe1/0x5d0 kvm_arch_vcpu_ioctl_run+0xd81/0x1c70 kvm_vcpu_ioctl+0x267/0x670 __x64_sys_ioctl+0x83/0xa0 do_syscall_64+0x56/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae 2024-05-22 not yet calculated CVE-2021-47463
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: audit: fix possible null-pointer dereference in audit_filter_rules Fix possible null-pointer dereference in audit_filter_rules. audit_filter_rules() error: we previously assumed ‘ctx’ could be null 2024-05-22 not yet calculated CVE-2021-47464
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: KVM: PPC: Book3S HV: Fix stack handling in idle_kvm_start_guest() In commit 10d91611f426 (“powerpc/64s: Reimplement book3s idle code in C”) kvm_start_guest() became idle_kvm_start_guest(). The old code allocated a stack frame on the emergency stack, but didn’t use the frame to store anything, and also didn’t store anything in its caller’s frame. idle_kvm_start_guest() on the other hand is written more like a normal C function, it creates a frame on entry, and also stores CR/LR into its callers frame (per the ABI). The problem is that there is no caller frame on the emergency stack. The emergency stack for a given CPU is allocated with: paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; So emergency_sp actually points to the first address above the emergency stack allocation for a given CPU, we must not store above it without first decrementing it to create a frame. This is different to the regular kernel stack, paca->kstack, which is initialised to point at an initial frame that is ready to use. idle_kvm_start_guest() stores the backchain, CR and LR all of which write outside the allocation for the emergency stack. It then creates a stack frame and saves the non-volatile registers. Unfortunately the frame it creates is not large enough to fit the non-volatiles, and so the saving of the non-volatile registers also writes outside the emergency stack allocation. The end result is that we corrupt whatever is at 0-24 bytes, and 112-248 bytes above the emergency stack allocation. In practice this has gone unnoticed because the memory immediately above the emergency stack happens to be used for other stack allocations, either another CPUs mc_emergency_sp or an IRQ stack. See the order of calls to irqstack_early_init() and emergency_stack_init(). The low addresses of another stack are the top of that stack, and so are only used if that stack is under extreme pressue, which essentially never happens in practice – and if it did there’s a high likelyhood we’d crash due to that stack overflowing. Still, we shouldn’t be corrupting someone else’s stack, and it is purely luck that we aren’t corrupting something else. To fix it we save CR/LR into the caller’s frame using the existing r1 on entry, we then create a SWITCH_FRAME_SIZE frame (which has space for pt_regs) on the emergency stack with the backchain pointing to the existing stack, and then finally we switch to the new frame on the emergency stack. 2024-05-22 not yet calculated CVE-2021-47465
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mm, slub: fix potential memoryleak in kmem_cache_open() In error path, the random_seq of slub cache might be leaked. Fix this by using __kmem_cache_release() to release all the relevant resources. 2024-05-22 not yet calculated CVE-2021-47466
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: kunit: fix reference count leak in kfree_at_end The reference counting issue happens in the normal path of kfree_at_end(). When kunit_alloc_and_get_resource() is invoked, the function forgets to handle the returned resource object, whose refcount increased inside, causing a refcount leak. Fix this issue by calling kunit_alloc_resource() instead of kunit_alloc_and_get_resource(). Fixed the following when applying: Shuah Khan <[email protected]> CHECK: Alignment should match open parenthesis + kunit_alloc_resource(test, NULL, kfree_res_free, GFP_KERNEL, (void *)to_free); 2024-05-22 not yet calculated CVE-2021-47467
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: isdn: mISDN: Fix sleeping function called from invalid context The driver can call card->isac.release() function from an atomic context. Fix this by calling this function after releasing the lock. The following log reveals it: [ 44.168226 ] BUG: sleeping function called from invalid context at kernel/workqueue.c:3018 [ 44.168941 ] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 5475, name: modprobe [ 44.169574 ] INFO: lockdep is turned off. [ 44.169899 ] irq event stamp: 0 [ 44.170160 ] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [ 44.170627 ] hardirqs last disabled at (0): [<ffffffff814209ed>] copy_process+0x132d/0x3e00 [ 44.171240 ] softirqs last enabled at (0): [<ffffffff81420a1a>] copy_process+0x135a/0x3e00 [ 44.171852 ] softirqs last disabled at (0): [<0000000000000000>] 0x0 [ 44.172318 ] Preemption disabled at: [ 44.172320 ] [<ffffffffa009b0a9>] nj_release+0x69/0x500 [netjet] [ 44.174441 ] Call Trace: [ 44.174630 ] dump_stack_lvl+0xa8/0xd1 [ 44.174912 ] dump_stack+0x15/0x17 [ 44.175166 ] ___might_sleep+0x3a2/0x510 [ 44.175459 ] ? nj_release+0x69/0x500 [netjet] [ 44.175791 ] __might_sleep+0x82/0xe0 [ 44.176063 ] ? start_flush_work+0x20/0x7b0 [ 44.176375 ] start_flush_work+0x33/0x7b0 [ 44.176672 ] ? trace_irq_enable_rcuidle+0x85/0x170 [ 44.177034 ] ? kasan_quarantine_put+0xaa/0x1f0 [ 44.177372 ] ? kasan_quarantine_put+0xaa/0x1f0 [ 44.177711 ] __flush_work+0x11a/0x1a0 [ 44.177991 ] ? flush_work+0x20/0x20 [ 44.178257 ] ? lock_release+0x13c/0x8f0 [ 44.178550 ] ? __kasan_check_write+0x14/0x20 [ 44.178872 ] ? do_raw_spin_lock+0x148/0x360 [ 44.179187 ] ? read_lock_is_recursive+0x20/0x20 [ 44.179530 ] ? __kasan_check_read+0x11/0x20 [ 44.179846 ] ? do_raw_spin_unlock+0x55/0x900 [ 44.180168 ] ? ____kasan_slab_free+0x116/0x140 [ 44.180505 ] ? _raw_spin_unlock_irqrestore+0x41/0x60 [ 44.180878 ] ? skb_queue_purge+0x1a3/0x1c0 [ 44.181189 ] ? kfree+0x13e/0x290 [ 44.181438 ] flush_work+0x17/0x20 [ 44.181695 ] mISDN_freedchannel+0xe8/0x100 [ 44.182006 ] isac_release+0x210/0x260 [mISDNipac] [ 44.182366 ] nj_release+0xf6/0x500 [netjet] [ 44.182685 ] nj_remove+0x48/0x70 [netjet] [ 44.182989 ] pci_device_remove+0xa9/0x250 2024-05-22 not yet calculated CVE-2021-47468
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: spi: Fix deadlock when adding SPI controllers on SPI buses Currently we have a global spi_add_lock which we take when adding new devices so that we can check that we’re not trying to reuse a chip select that’s already controlled. This means that if the SPI device is itself a SPI controller and triggers the instantiation of further SPI devices we trigger a deadlock as we try to register and instantiate those devices while in the process of doing so for the parent controller and hence already holding the global spi_add_lock. Since we only care about concurrency within a single SPI bus move the lock to be per controller, avoiding the deadlock. This can be easily triggered in the case of spi-mux. 2024-05-22 not yet calculated CVE-2021-47469
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: mm, slub: fix potential use-after-free in slab_debugfs_fops When sysfs_slab_add failed, we shouldn’t call debugfs_slab_add() for s because s will be freed soon. And slab_debugfs_fops will use s later leading to a use-after-free. 2024-05-22 not yet calculated CVE-2021-47470
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: drm: mxsfb: Fix NULL pointer dereference crash on unload The mxsfb->crtc.funcs may already be NULL when unloading the driver, in which case calling mxsfb_irq_disable() via drm_irq_uninstall() from mxsfb_unload() leads to NULL pointer dereference. Since all we care about is masking the IRQ and mxsfb->base is still valid, just use that to clear and mask the IRQ. 2024-05-22 not yet calculated CVE-2021-47471
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: mdiobus: Fix memory leak in __mdiobus_register Once device_register() failed, we should call put_device() to decrement reference count for cleanup. Or it will cause memory leak. BUG: memory leak unreferenced object 0xffff888114032e00 (size 256): comm “kworker/1:3”, pid 2960, jiffies 4294943572 (age 15.920s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 08 2e 03 14 81 88 ff ff ……………. 08 2e 03 14 81 88 ff ff 90 76 65 82 ff ff ff ff ………ve….. backtrace: [<ffffffff8265cfab>] kmalloc include/linux/slab.h:591 [inline] [<ffffffff8265cfab>] kzalloc include/linux/slab.h:721 [inline] [<ffffffff8265cfab>] device_private_init drivers/base/core.c:3203 [inline] [<ffffffff8265cfab>] device_add+0x89b/0xdf0 drivers/base/core.c:3253 [<ffffffff828dd643>] __mdiobus_register+0xc3/0x450 drivers/net/phy/mdio_bus.c:537 [<ffffffff828cb835>] __devm_mdiobus_register+0x75/0xf0 drivers/net/phy/mdio_devres.c:87 [<ffffffff82b92a00>] ax88772_init_mdio drivers/net/usb/asix_devices.c:676 [inline] [<ffffffff82b92a00>] ax88772_bind+0x330/0x480 drivers/net/usb/asix_devices.c:786 [<ffffffff82baa33f>] usbnet_probe+0x3ff/0xdf0 drivers/net/usb/usbnet.c:1745 [<ffffffff82c36e17>] usb_probe_interface+0x177/0x370 drivers/usb/core/driver.c:396 [<ffffffff82661d17>] call_driver_probe drivers/base/dd.c:517 [inline] [<ffffffff82661d17>] really_probe.part.0+0xe7/0x380 drivers/base/dd.c:596 [<ffffffff826620bc>] really_probe drivers/base/dd.c:558 [inline] [<ffffffff826620bc>] __driver_probe_device+0x10c/0x1e0 drivers/base/dd.c:751 [<ffffffff826621ba>] driver_probe_device+0x2a/0x120 drivers/base/dd.c:781 [<ffffffff82662a26>] __device_attach_driver+0xf6/0x140 drivers/base/dd.c:898 [<ffffffff8265eca7>] bus_for_each_drv+0xb7/0x100 drivers/base/bus.c:427 [<ffffffff826625a2>] __device_attach+0x122/0x260 drivers/base/dd.c:969 [<ffffffff82660916>] bus_probe_device+0xc6/0xe0 drivers/base/bus.c:487 [<ffffffff8265cd0b>] device_add+0x5fb/0xdf0 drivers/base/core.c:3359 [<ffffffff82c343b9>] usb_set_configuration+0x9d9/0xb90 drivers/usb/core/message.c:2170 [<ffffffff82c4473c>] usb_generic_driver_probe+0x8c/0xc0 drivers/usb/core/generic.c:238 BUG: memory leak unreferenced object 0xffff888116f06900 (size 32): comm “kworker/0:2”, pid 2670, jiffies 4294944448 (age 7.160s) hex dump (first 32 bytes): 75 73 62 2d 30 30 31 3a 30 30 33 00 00 00 00 00 usb-001:003….. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ……………. backtrace: [<ffffffff81484516>] kstrdup+0x36/0x70 mm/util.c:60 [<ffffffff814845a3>] kstrdup_const+0x53/0x80 mm/util.c:83 [<ffffffff82296ba2>] kvasprintf_const+0xc2/0x110 lib/kasprintf.c:48 [<ffffffff82358d4b>] kobject_set_name_vargs+0x3b/0xe0 lib/kobject.c:289 [<ffffffff826575f3>] dev_set_name+0x63/0x90 drivers/base/core.c:3147 [<ffffffff828dd63b>] __mdiobus_register+0xbb/0x450 drivers/net/phy/mdio_bus.c:535 [<ffffffff828cb835>] __devm_mdiobus_register+0x75/0xf0 drivers/net/phy/mdio_devres.c:87 [<ffffffff82b92a00>] ax88772_init_mdio drivers/net/usb/asix_devices.c:676 [inline] [<ffffffff82b92a00>] ax88772_bind+0x330/0x480 drivers/net/usb/asix_devices.c:786 [<ffffffff82baa33f>] usbnet_probe+0x3ff/0xdf0 drivers/net/usb/usbnet.c:1745 [<ffffffff82c36e17>] usb_probe_interface+0x177/0x370 drivers/usb/core/driver.c:396 [<ffffffff82661d17>] call_driver_probe drivers/base/dd.c:517 [inline] [<ffffffff82661d17>] really_probe.part.0+0xe7/0x380 drivers/base/dd.c:596 [<ffffffff826620bc>] really_probe drivers/base/dd.c:558 [inline] [<ffffffff826620bc>] __driver_probe_device+0x10c/0x1e0 drivers/base/dd.c:751 [<ffffffff826621ba>] driver_probe_device+0x2a/0x120 drivers/base/dd.c:781 [<ffffffff82662a26>] __device_attach_driver+0xf6/0x140 drivers/base/dd.c:898 [<ffffffff8265eca7>] bus_for_each —truncated— 2024-05-22 not yet calculated CVE-2021-47472
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix a memory leak in an error path of qla2x00_process_els() Commit 8c0eb596baa5 (“[SCSI] qla2xxx: Fix a memory leak in an error path of qla2x00_process_els()”), intended to change: bsg_job->request->msgcode == FC_BSG_HST_ELS_NOLOGIN bsg_job->request->msgcode != FC_BSG_RPT_ELS but changed it to: bsg_job->request->msgcode == FC_BSG_RPT_ELS instead. Change the == to a != to avoid leaking the fcport structure or freeing unallocated memory. 2024-05-22 not yet calculated CVE-2021-47473
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: comedi: vmk80xx: fix bulk-buffer overflow The driver is using endpoint-sized buffers but must not assume that the tx and rx buffers are of equal size or a malicious device could overflow the slab-allocated receive buffer when doing bulk transfers. 2024-05-22 not yet calculated CVE-2021-47474
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: comedi: vmk80xx: fix transfer-buffer overflows The driver uses endpoint-sized USB transfer buffers but up until recently had no sanity checks on the sizes. Commit e1f13c879a7c (“staging: comedi: check validity of wMaxPacketSize of usb endpoints found”) inadvertently fixed NULL-pointer dereferences when accessing the transfer buffers in case a malicious device has a zero wMaxPacketSize. Make sure to allocate buffers large enough to handle also the other accesses that are done without a size check (e.g. byte 18 in vmk80xx_cnt_insn_read() for the VMK8061_MODEL) to avoid writing beyond the buffers, for example, when doing descriptor fuzzing. The original driver was for a low-speed device with 8-byte buffers. Support was later added for a device that uses bulk transfers and is presumably a full-speed device with a maximum 64-byte wMaxPacketSize. 2024-05-22 not yet calculated CVE-2021-47475
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: comedi: ni_usb6501: fix NULL-deref in command paths The driver uses endpoint-sized USB transfer buffers but had no sanity checks on the sizes. This can lead to zero-size-pointer dereferences or overflowed transfer buffers in ni6501_port_command() and ni6501_counter_command() if a (malicious) device has smaller max-packet sizes than expected (or when doing descriptor fuzz testing). Add the missing sanity checks to probe(). 2024-05-22 not yet calculated CVE-2021-47476
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: comedi: dt9812: fix DMA buffers on stack USB transfer buffers are typically mapped for DMA and must not be allocated on the stack or transfers will fail. Allocate proper transfer buffers in the various command helpers and return an error on short transfers instead of acting on random stack data. Note that this also fixes a stack info leak on systems where DMA is not used as 32 bytes are always sent to the device regardless of how short the command is. 2024-05-22 not yet calculated CVE-2021-47477
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: isofs: Fix out of bound access for corrupted isofs image When isofs image is suitably corrupted isofs_read_inode() can read data beyond the end of buffer. Sanity-check the directory entry length before using it. 2024-05-22 not yet calculated CVE-2021-47478
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8712: fix use-after-free in rtl8712_dl_fw Syzbot reported use-after-free in rtl8712_dl_fw(). The problem was in race condition between r871xu_dev_remove() ->ndo_open() callback. It’s easy to see from crash log, that driver accesses released firmware in ->ndo_open() callback. It may happen, since driver was releasing firmware _before_ unregistering netdev. Fix it by moving unregister_netdev() before cleaning up resources. Call Trace: … rtl871x_open_fw drivers/staging/rtl8712/hal_init.c:83 [inline] rtl8712_dl_fw+0xd95/0xe10 drivers/staging/rtl8712/hal_init.c:170 rtl8712_hal_init drivers/staging/rtl8712/hal_init.c:330 [inline] rtl871x_hal_init+0xae/0x180 drivers/staging/rtl8712/hal_init.c:394 netdev_open+0xe6/0x6c0 drivers/staging/rtl8712/os_intfs.c:380 __dev_open+0x2bc/0x4d0 net/core/dev.c:1484 Freed by task 1306: … release_firmware+0x1b/0x30 drivers/base/firmware_loader/main.c:1053 r871xu_dev_remove+0xcc/0x2c0 drivers/staging/rtl8712/usb_intf.c:599 usb_unbind_interface+0x1d8/0x8d0 drivers/usb/core/driver.c:458 2024-05-22 not yet calculated CVE-2021-47479
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: scsi: core: Put LLD module refcnt after SCSI device is released SCSI host release is triggered when SCSI device is freed. We have to make sure that the low-level device driver module won’t be unloaded before SCSI host instance is released because shost->hostt is required in the release handler. Make sure to put LLD module refcnt after SCSI device is released. Fixes a kernel panic of ‘BUG: unable to handle page fault for address’ reported by Changhui and Yi. 2024-05-22 not yet calculated CVE-2021-47480
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Initialize the ODP xarray when creating an ODP MR Normally the zero fill would hide the missing initialization, but an errant set to desc_size in reg_create() causes a crash: BUG: unable to handle page fault for address: 0000000800000000 PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 5 PID: 890 Comm: ib_write_bw Not tainted 5.15.0-rc4+ #47 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5_ib_dereg_mr+0x14/0x3b0 [mlx5_ib] Code: 48 63 cd 4c 89 f7 48 89 0c 24 e8 37 30 03 e1 48 8b 0c 24 eb a0 90 0f 1f 44 00 00 41 56 41 55 41 54 55 53 48 89 fb 48 83 ec 30 <48> 8b 2f 65 48 8b 04 25 28 00 00 00 48 89 44 24 28 31 c0 8b 87 c8 RSP: 0018:ffff88811afa3a60 EFLAGS: 00010286 RAX: 000000000000001c RBX: 0000000800000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000800000000 RBP: 0000000800000000 R08: 0000000000000000 R09: c0000000fffff7ff R10: ffff88811afa38f8 R11: ffff88811afa38f0 R12: ffffffffa02c7ac0 R13: 0000000000000000 R14: ffff88811afa3cd8 R15: ffff88810772fa00 FS: 00007f47b9080740(0000) GS:ffff88852cd40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000800000000 CR3: 000000010761e003 CR4: 0000000000370ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: mlx5_ib_free_odp_mr+0x95/0xc0 [mlx5_ib] mlx5_ib_dereg_mr+0x128/0x3b0 [mlx5_ib] ib_dereg_mr_user+0x45/0xb0 [ib_core] ? xas_load+0x8/0x80 destroy_hw_idr_uobject+0x1a/0x50 [ib_uverbs] uverbs_destroy_uobject+0x2f/0x150 [ib_uverbs] uobj_destroy+0x3c/0x70 [ib_uverbs] ib_uverbs_cmd_verbs+0x467/0xb00 [ib_uverbs] ? uverbs_finalize_object+0x60/0x60 [ib_uverbs] ? ttwu_queue_wakelist+0xa9/0xe0 ? pty_write+0x85/0x90 ? file_tty_write.isra.33+0x214/0x330 ? process_echoes+0x60/0x60 ib_uverbs_ioctl+0xa7/0x110 [ib_uverbs] __x64_sys_ioctl+0x10d/0x8e0 ? vfs_write+0x17f/0x260 do_syscall_64+0x3c/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae Add the missing xarray initialization and remove the desc_size set. 2024-05-22 not yet calculated CVE-2021-47481
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: net: batman-adv: fix error handling Syzbot reported ODEBUG warning in batadv_nc_mesh_free(). The problem was in wrong error handling in batadv_mesh_init(). Before this patch batadv_mesh_init() was calling batadv_mesh_free() in case of any batadv_*_init() calls failure. This approach may work well, when there is some kind of indicator, which can tell which parts of batadv are initialized; but there isn’t any. All written above lead to cleaning up uninitialized fields. Even if we hide ODEBUG warning by initializing bat_priv->nc.work, syzbot was able to hit GPF in batadv_nc_purge_paths(), because hash pointer in still NULL. [1] To fix these bugs we can unwind batadv_*_init() calls one by one. It is good approach for 2 reasons: 1) It fixes bugs on error handling path 2) It improves the performance, since we won’t call unneeded batadv_*_free() functions. So, this patch makes all batadv_*_init() clean up all allocated memory before returning with an error to no call correspoing batadv_*_free() and open-codes batadv_mesh_free() with proper order to avoid touching uninitialized fields. 2024-05-22 not yet calculated CVE-2021-47482
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Linux–Linux
 
In the Linux kernel, the following vulnerability has been resolved: regmap: Fix possible double-free in regcache_rbtree_exit() In regcache_rbtree_insert_to_block(), when ‘present’ realloc failed, the ‘blk’ which is supposed to assign to ‘rbnode->block’ will be freed, so ‘rbnode->block’ points a freed memory, in the error handling path of regcache_rbtree_init(), ‘rbnode->block’ will be freed again in regcach